These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 39032409)

  • 1. A novel method for measurements of sleep/wake states, feeding and drinking behaviors using the tracking technique of 3D positions in freely moving mice.
    Hamada T; Sutherland K; Ishikawa M; Saito J; Miyamoto N; Honma S; Shirato H; Honma KI
    Biochem Biophys Res Commun; 2024 Nov; 732():150359. PubMed ID: 39032409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restoring the Molecular Clockwork within the Suprachiasmatic Hypothalamus of an Otherwise Clockless Mouse Enables Circadian Phasing and Stabilization of Sleep-Wake Cycles and Reverses Memory Deficits.
    Maywood ES; Chesham JE; Winsky-Sommerer R; Hastings MH
    J Neurosci; 2021 Oct; 41(41):8562-8576. PubMed ID: 34446572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sleep-wake distribution contributes to the peripheral rhythms in PERIOD-2.
    Hoekstra MM; Jan M; Katsioudi G; Emmenegger Y; Franken P
    Elife; 2021 Dec; 10():. PubMed ID: 34895464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3-D motion capture for long-term tracking of spontaneous locomotor behaviors and circadian sleep/wake rhythms in mouse.
    Sourioux M; Bestaven E; Guillaud E; Bertrand S; Cabanas M; Milan L; Mayo W; Garret M; Cazalets JR
    J Neurosci Methods; 2018 Feb; 295():51-57. PubMed ID: 29197617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of running wheel activity on free-running sleep/wake and drinking circadian rhythms in mice.
    Edgar DM; Kilduff TS; Martin CE; Dement WC
    Physiol Behav; 1991 Aug; 50(2):373-8. PubMed ID: 1745682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetic demands regulate sleep-wake rhythm circuit development.
    Poe AR; Zhu L; Tang SH; Valencia E; Kayser MS
    Elife; 2024 Jul; 13():. PubMed ID: 39037919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wireless monitoring of respiration with EEG reveals relationships between respiration, behavior, and brain activity in freely moving mice.
    Dasgupta D; Schneider-Luftman D; Schaefer AT; Harris JJ
    J Neurophysiol; 2024 Jul; 132(1):290-307. PubMed ID: 38810259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian-dependent and circadian-independent behavioral actions of hypocretin/orexin.
    España RA; Plahn S; Berridge CW
    Brain Res; 2002 Jul; 943(2):224-36. PubMed ID: 12101045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid assessment of sleep-wake behavior in mice.
    Fisher SP; Godinho SI; Pothecary CA; Hankins MW; Foster RG; Peirson SN
    J Biol Rhythms; 2012 Feb; 27(1):48-58. PubMed ID: 22306973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian rhythms of sleep and wakefulness in mice: analysis using long-term automated recording of sleep.
    Richardson GS; Moore-Ede MC; Czeisler CA; Dement WC
    Am J Physiol; 1985 Mar; 248(3 Pt 2):R320-30. PubMed ID: 3838419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double recording system of Period1 gene expression rhythm in the olfactory bulb and liver in freely moving mouse.
    Hamada K; Oota A; Ito R; Kasahara S; Nakajima K; Kikuchi Y; Sutherland K; Ishikawa M; Shirato H; Ozaki M; Hamada T
    Biochem Biophys Res Commun; 2020 Sep; 529(4):898-903. PubMed ID: 32819596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian rhythms of hedonic drinking behavior in mice.
    Bainier C; Mateo M; Felder-Schmittbuhl MP; Mendoza J
    Neuroscience; 2017 May; 349():229-238. PubMed ID: 28286126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo imaging of clock gene expression in multiple tissues of freely moving mice.
    Hamada T; Sutherland K; Ishikawa M; Miyamoto N; Honma S; Shirato H; Honma K
    Nat Commun; 2016 Jun; 7():11705. PubMed ID: 27285820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term in vivo recording of circadian rhythms in brains of freely moving mice.
    Mei L; Fan Y; Lv X; Welsh DK; Zhan C; Zhang EE
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4276-4281. PubMed ID: 29610316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of d-luciferin for bioluminescence to detect gene expression in freely moving mice for long durations.
    Nakajima K; Hamada K; Ito R; Yoshida Y; Sutherland K; Ishikawa M; Ozaki M; Shirato H; Hamada T
    Luminescence; 2021 Feb; 36(1):94-98. PubMed ID: 32721066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chinese formula Guben-Jiannao Ye alleviates the dysfunction of circadian and sleep rhythms in APP/PS1 mice implicated in activation of the PI3K/AKT/mTOR signaling pathway.
    Mao JQ; Cheng L; Zhang YD; Xie GJ; Wang P
    J Ethnopharmacol; 2024 Dec; 335():118696. PubMed ID: 39151711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of running wheel availability on circadian patterns of sleep and wakefulness in mice.
    Welsh D; Richardson GS; Dement WC
    Physiol Behav; 1988; 43(6):771-77. PubMed ID: 3237790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian temperature and wake rhythms of rats exposed to prolonged continuous illumination.
    Eastman C; Rechtschaffen A
    Physiol Behav; 1983 Oct; 31(4):417-27. PubMed ID: 6657763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing olfactory bulb oscillations to perform fully brain-based sleep-scoring and real-time monitoring of anaesthesia depth.
    Bagur S; Lacroix MM; de Lavilléon G; Lefort JM; Geoffroy H; Benchenane K
    PLoS Biol; 2018 Nov; 16(11):e2005458. PubMed ID: 30408025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Circadian regulation of sleep-wake cycles and food anticipation].
    Nakamura W
    Brain Nerve; 2012 Jun; 64(6):647-56. PubMed ID: 22647472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.