These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 39032417)

  • 1. Photoredox coupling of carbon dioxide reduction with tetracycline oxidation using excited-state bismuth and cobalt dual sites over cobalt-tailored bismuth oxychloride.
    Li X; Lin H; Jia X; Sun H; Chen S; Cao J
    J Colloid Interface Sci; 2024 Dec; 676():343-354. PubMed ID: 39032417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen vacancies synergistic cobalt phosphide electron bridge modulated bismuth oxychloride/carbon nitride Z-scheme junction for efficient carbon dioxide reduction coupled with tetracycline oxidation.
    Sun H; Jia X; Cao J; Chen S; Chen Y; Lin H
    J Colloid Interface Sci; 2024 May; 661():150-163. PubMed ID: 38295697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic introduction of oxygen vacancy and silver/silver iodide: Realizing deep structure regulation on bismuth oxybromide for robust carbon dioxide reduction and pollutant oxidation.
    Jia X; Lin H; Cao J; Hu C; Sun H; Chen S
    J Colloid Interface Sci; 2022 Oct; 624():181-195. PubMed ID: 35660887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved photocatalytic degradation of perfluorooctanoic acid on oxygen vacancies-tunable bismuth oxychloride nanosheets prepared by a facile hydrolysis.
    Song Z; Dong X; Fang J; Xiong C; Wang N; Tang X
    J Hazard Mater; 2019 Sep; 377():371-380. PubMed ID: 31173988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Fenton-like Process for Pollutant Removal in Electron-Rich/Poor Reaction Sites Induced by Surface Oxygen Vacancy over Cobalt-Zinc Oxides.
    Zhan S; Zhang H; Mi X; Zhao Y; Hu C; Lyu L
    Environ Sci Technol; 2020 Jul; 54(13):8333-8343. PubMed ID: 32511906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing oxygen vacancy mediated bismuth molybdate (Bi
    Li S; Wang C; Cai M; Liu Y; Dong K; Zhang J
    J Colloid Interface Sci; 2022 Oct; 624():219-232. PubMed ID: 35660890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steering Geometric Reconstruction of Bismuth with Accelerated Dynamics for CO
    Wang X; Zhang Y; Wang S; Li Y; Feng Y; Dai Z; Chen Y; Meng X; Xia J; Zhang G
    Angew Chem Int Ed Engl; 2024 Aug; 63(34):e202407665. PubMed ID: 38837634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into the mechanism of deep NO photo-oxidation by bismuth tantalate with oxygen vacancies.
    Liu L; Ouyang P; Li Y; Duan Y; Dong F; Lv K
    J Hazard Mater; 2022 Oct; 439():129637. PubMed ID: 35901631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inorganometallic Photocatalyst for CO
    Son HJ; Pac C; Kang SO
    Acc Chem Res; 2021 Dec; 54(24):4530-4544. PubMed ID: 34881862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic insights into the formation of surface oxygen vacancies with controllable concentration and long-term stability in small-molecule bonded bismuth-based semiconductor hybrid photocatalyst.
    Zhu Z; Zhao X; Xiao X; Xu C; Zuo X; Nan J
    J Colloid Interface Sci; 2022 Nov; 625():109-118. PubMed ID: 35714403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bi selectively doped SrTiO
    Pan L; Mei H; Zhu G; Li S; Xie X; Gong S; Liu H; Jin Z; Gao J; Cheng L; Zhang L
    J Colloid Interface Sci; 2022 Apr; 611():137-148. PubMed ID: 34942487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances on bismuth oxyhalides for photocatalytic CO
    Xu L; Yu JC; Wang Y
    J Environ Sci (China); 2024 Jun; 140():183-203. PubMed ID: 38331499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic Cobalt-Silver Dual-Metal Sites Confined on Carbon Nitride with Synergistic Ag Nanoparticles for Enhanced CO
    Deng A; Zhao E; Li Q; Sun Y; Liu Y; Yang S; He H; Xu Y; Zhao W; Song H; Xu Z; Chen Z
    ACS Nano; 2023 Jun; 17(12):11869-11881. PubMed ID: 37289089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrathin Bismuth Nanosheets as a Highly Efficient CO
    Su P; Xu W; Qiu Y; Zhang T; Li X; Zhang H
    ChemSusChem; 2018 Mar; 11(5):848-853. PubMed ID: 29323463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of In-S-co-doped two-dimensional BiOCl coupling with surface hydroxylation toward simultaneously efficient charge separation and redox capability for photocatalytic water remediation.
    Xie T; Sun S; Guo Y; Luo Y; Yang M; Yang B; Cui J
    Chemosphere; 2023 Feb; 315():137742. PubMed ID: 36608890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets.
    Guan M; Xiao C; Zhang J; Fan S; An R; Cheng Q; Xie J; Zhou M; Ye B; Xie Y
    J Am Chem Soc; 2013 Jul; 135(28):10411-7. PubMed ID: 23782301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling Benzylamine Oxidation with CO
    Zhang M; Mao Y; Bao X; Zhai G; Xiao D; Liu D; Wang P; Cheng H; Liu Y; Zheng Z; Dai Y; Fan Y; Wang Z; Huang B
    Angew Chem Int Ed Engl; 2023 Sep; 62(36):e202302919. PubMed ID: 37389483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic Integration of AuCu Co-Catalyst with Oxygen Vacancies on TiO
    Jiang D; Zhou Y; Zhang Q; Song Q; Zhou C; Shi X; Li D
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46772-46782. PubMed ID: 34555906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO
    Tang SF; Lu XL; Zhang C; Wei ZW; Si R; Lu TB
    Sci Bull (Beijing); 2021 Aug; 66(15):1533-1541. PubMed ID: 36654282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bismuth Vacancy-Induced Efficient CO
    Wang L; Wang R; Qiu T; Yang L; Han Q; Shen Q; Zhou X; Zhou Y; Zou Z
    Nano Lett; 2021 Dec; 21(24):10260-10266. PubMed ID: 34767363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.