These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 39032914)

  • 1. Stratified epidemic model using a latent marked Hawkes process.
    Lamprinakou S; Gandy A
    Math Biosci; 2024 Sep; 375():109260. PubMed ID: 39032914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using a latent Hawkes process for epidemiological modelling.
    Lamprinakou S; Gandy A; McCoy E
    PLoS One; 2023; 18(3):e0281370. PubMed ID: 36857340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mechanistic and data-driven reconstruction of the time-varying reproduction number: Application to the COVID-19 epidemic.
    Cazelles B; Champagne C; Nguyen-Van-Yen B; Comiskey C; Vergu E; Roche B
    PLoS Comput Biol; 2021 Jul; 17(7):e1009211. PubMed ID: 34310593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The epidemiological footprint of contact structures in models with two levels of mixing.
    Bansaye V; Deslandes F; Kubasch M; Vergu E
    J Math Biol; 2024 Sep; 89(4):45. PubMed ID: 39349838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model of Epidemic Kinetics with a Source on the Example of Moscow.
    Borovsky AV; Galkin AL
    Comput Math Methods Med; 2022; 2022():6145242. PubMed ID: 35222685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence of the reproduction matrix in epidemic forecasting.
    Gorji H; Stauffer N; Lunati I
    J R Soc Interface; 2024 Jul; 21(216):20240124. PubMed ID: 39081116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves.
    Parag KV
    PLoS Comput Biol; 2021 Sep; 17(9):e1009347. PubMed ID: 34492011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidemic Landscape and Forecasting of SARS-CoV-2 in India.
    Rajendrakumar AL; Nair ATN; Nangia C; Chourasia PK; Chourasia MK; Syed MG; Nair AS; Nair AB; Koya MSF
    J Epidemiol Glob Health; 2021 Mar; 11(1):55-59. PubMed ID: 32959618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superspreading quantified from bursty epidemic trajectories.
    Kirkegaard JB; Sneppen K
    Sci Rep; 2021 Dec; 11(1):24124. PubMed ID: 34916534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurability of the epidemic reproduction number in data-driven contact networks.
    Liu QH; Ajelli M; Aleta A; Merler S; Moreno Y; Vespignani A
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12680-12685. PubMed ID: 30463945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian data assimilation for estimating instantaneous reproduction numbers during epidemics: Applications to COVID-19.
    Yang X; Wang S; Xing Y; Li L; Xu RYD; Friston KJ; Guo Y
    PLoS Comput Biol; 2022 Feb; 18(2):e1009807. PubMed ID: 35196320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Efficient Approach to Nowcasting the Time-varying Reproduction Number.
    Sumalinab B; Gressani O; Hens N; Faes C
    Epidemiology; 2024 Jul; 35(4):512-516. PubMed ID: 38788149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refining Reproduction Number Estimates to Account for Unobserved Generations of Infection in Emerging Epidemics.
    Brizzi A; O'Driscoll M; Dorigatti I
    Clin Infect Dis; 2022 Aug; 75(1):e114-e121. PubMed ID: 35176766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of non-pharmacological interventions on the COVID-19 epidemic in Saudi Arabia.
    AlJohani NI; Mutai K
    Epidemiol Infect; 2021 Nov; 149():e252. PubMed ID: 34839841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative Strategies for the Estimation of a Disease's Basic Reproduction Number: A Model-Agnostic Study.
    Páez GN; Cerón JF; Cortés S; Quiroz AJ; Zea JF; Franco C; Cruz É; Vargas G; Castañeda C
    Bull Math Biol; 2021 Jul; 83(8):89. PubMed ID: 34216281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporating temporal distribution of population-level viral load enables real-time estimation of COVID-19 transmission.
    Lin Y; Yang B; Cobey S; Lau EHY; Adam DC; Wong JY; Bond HS; Cheung JK; Ho F; Gao H; Ali ST; Leung NHL; Tsang TK; Wu P; Leung GM; Cowling BJ
    Nat Commun; 2022 Mar; 13(1):1155. PubMed ID: 35241662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling COVID-19 pandemic using Bayesian analysis with application to Slovene data.
    Manevski D; Ružić Gorenjec N; Kejžar N; Blagus R
    Math Biosci; 2020 Nov; 329():108466. PubMed ID: 32920095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitigating bias in estimating epidemic severity due to heterogeneity of epidemic onset and data aggregation.
    Krishnan RG; Cenci S; Bourouiba L
    Ann Epidemiol; 2022 Jan; 65():1-14. PubMed ID: 34419601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global dynamics of COVID-19 epidemic model with recessive infection and isolation.
    Yuan R; Ma Y; Shen C; Zhao J; Luo X; Liu M
    Math Biosci Eng; 2021 Feb; 18(2):1833-1844. PubMed ID: 33757213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmission dynamics and control of two epidemic waves of SARS-CoV-2 in South Korea.
    Ryu S; Ali ST; Noh E; Kim D; Lau EHY; Cowling BJ
    BMC Infect Dis; 2021 May; 21(1):485. PubMed ID: 34039296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.