These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39033929)
1. Development of a biodegradable prosthesis through tissue engineering, for the organ-replacement or substitution of the extrahepatic bile duct. Valderrama-Treviño AI; Castell-Rodríguez AE; Hernández-Muñoz R; Vázquez-Torres NA; Macari-Jorge A; Barrera-Mera B; Maciel-Cerda A; Vera-Graziano R; Nuño-Lámbarri N; Montalvo-Javé EE Ann Hepatol; 2024; 29(5):101530. PubMed ID: 39033929 [TBL] [Abstract][Full Text] [Related]
2. A novel 3D printing PCL/GelMA scaffold containing USPIO for MRI-guided bile duct repair. Li H; Yin Y; Xiang Y; Liu H; Guo R Biomed Mater; 2020 May; 15(4):045004. PubMed ID: 32092713 [TBL] [Abstract][Full Text] [Related]
3. A novel therapy strategy for bile duct repair using tissue engineering technique: PCL/PLGA bilayered scaffold with hMSCs. Zong C; Wang M; Yang F; Chen G; Chen J; Tang Z; Liu Q; Gao C; Ma L; Wang J J Tissue Eng Regen Med; 2017 Apr; 11(4):966-976. PubMed ID: 25711909 [TBL] [Abstract][Full Text] [Related]
4. Co electrospinning -poly (vinyl alcohol)-chitosan/gelatin-poly ( Ranjbar-Mohammadi M; Tajdar F; Esmizadeh E; Arab Z Biomed Mater; 2024 May; 19(4):. PubMed ID: 38768605 [TBL] [Abstract][Full Text] [Related]
5. PCL-PGLA composite tubular scaffold preparation and biocompatibility investigation. Mo X; Weber HJ; Ramakrishna S Int J Artif Organs; 2006 Aug; 29(8):790-9. PubMed ID: 16969757 [TBL] [Abstract][Full Text] [Related]
6. A tailored polylactic acid/polycaprolactone biodegradable and bioactive 3D porous scaffold containing gelatin nanofibers and Taurine for bone regeneration. Samadian H; Farzamfar S; Vaez A; Ehterami A; Bit A; Alam M; Goodarzi A; Darya G; Salehi M Sci Rep; 2020 Aug; 10(1):13366. PubMed ID: 32770114 [TBL] [Abstract][Full Text] [Related]
7. Design and characterization of biodegradable multi layered electrospun nanofibers for corneal tissue engineering applications. Arabpour Z; Baradaran-Rafii A; Bakhshaiesh NL; Ai J; Ebrahimi-Barough S; Esmaeili Malekabadi H; Nazeri N; Vaez A; Salehi M; Sefat F; Ostad SN J Biomed Mater Res A; 2019 Oct; 107(10):2340-2349. PubMed ID: 31161710 [TBL] [Abstract][Full Text] [Related]
8. Biomimetic dual-oriented/bilayered electrospun scaffold for vascular tissue engineering. Li X; Huang L; Li L; Tang Y; Liu Q; Xie H; Tian J; Zhou S; Tang G J Biomater Sci Polym Ed; 2020 Mar; 31(4):439-455. PubMed ID: 31760873 [TBL] [Abstract][Full Text] [Related]
9. The compatibility of swine BMDC-derived bile duct endothelial cells with a nanostructured electrospun PLGA material. Zhou J; Yang Y; Yin X; Xu Y; Cao Y; Xu Q Int J Artif Organs; 2013 Feb; 36(2):121-30. PubMed ID: 23335380 [TBL] [Abstract][Full Text] [Related]
11. Macroporous nanofibrous vascular scaffold with improved biodegradability and smooth muscle cells infiltration prepared by dual phase separation technique. Wang W; Nie W; Liu D; Du H; Zhou X; Chen L; Wang H; Mo X; Li L; He C Int J Nanomedicine; 2018; 13():7003-7018. PubMed ID: 30464455 [TBL] [Abstract][Full Text] [Related]
12. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Gautam S; Chou CF; Dinda AK; Potdar PD; Mishra NC Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():402-9. PubMed ID: 24268275 [TBL] [Abstract][Full Text] [Related]
13. Distinctive degradation behaviors of electrospun polyglycolide, poly(DL-lactide-co-glycolide), and poly(L-lactide-co-epsilon-caprolactone) nanofibers cultured with/without porcine smooth muscle cells. Dong Y; Yong T; Liao S; Chan CK; Stevens MM; Ramakrishna S Tissue Eng Part A; 2010 Jan; 16(1):283-98. PubMed ID: 19839726 [TBL] [Abstract][Full Text] [Related]
16. Electrospinning of aniline pentamer-graft-gelatin/PLLA nanofibers for bone tissue engineering. Liu Y; Cui H; Zhuang X; Wei Y; Chen X Acta Biomater; 2014 Dec; 10(12):5074-5080. PubMed ID: 25200841 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. Gomes S; Rodrigues G; Martins G; Henriques C; Silva JC Int J Biol Macromol; 2017 Sep; 102():1174-1185. PubMed ID: 28487195 [TBL] [Abstract][Full Text] [Related]
18. Nanohybrid biodegradable scaffolds for TGF-β3 release for the chondrogenic differentiation of human mesenchymal stem cells. Qasim M; Le NXT; Nguyen TPT; Chae DS; Park SJ; Lee NY Int J Pharm; 2020 May; 581():119248. PubMed ID: 32240810 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Gautam S; Dinda AK; Mishra NC Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1228-35. PubMed ID: 23827565 [TBL] [Abstract][Full Text] [Related]
20. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Li D; Chen W; Sun B; Li H; Wu T; Ke Q; Huang C; Ei-Hamshary H; Al-Deyab SS; Mo X Colloids Surf B Biointerfaces; 2016 Oct; 146():632-41. PubMed ID: 27429297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]