These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 39034371)
1. High temperature sensitivity of Arctic isoprene emissions explained by sedges. Wang H; Welch AM; Nagalingam S; Leong C; Czimczik CI; Tang J; Seco R; Rinnan R; Vettikkat L; Schobesberger S; Holst T; Brijesh S; Sheesley RJ; Barsanti KC; Guenther AB Nat Commun; 2024 Jul; 15(1):6144. PubMed ID: 39034371 [TBL] [Abstract][Full Text] [Related]
2. Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests. Yu H; Guenther A; Gu D; Warneke C; Geron C; Goldstein A; Graus M; Karl T; Kaser L; Misztal P; Yuan B Sci Total Environ; 2017 Oct; 595():149-158. PubMed ID: 28384571 [TBL] [Abstract][Full Text] [Related]
3. Modeling Isoprene Emission Response to Drought and Heatwaves Within MEGAN Using Evapotranspiration Data and by Coupling With the Community Land Model. Wang H; Lu X; Seco R; Stavrakou T; Karl T; Jiang X; Gu L; Guenther AB J Adv Model Earth Syst; 2022 Dec; 14(12):e2022MS003174. PubMed ID: 37035629 [TBL] [Abstract][Full Text] [Related]
4. Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium. Acosta Navarro JC; Smolander S; Struthers H; Zorita E; Ekman AM; Kaplan JO; Guenther A; Arneth A; Riipinen I J Geophys Res Atmos; 2014 Jun; 119(11):6867-6885. PubMed ID: 25866703 [TBL] [Abstract][Full Text] [Related]
5. Isoprene emission from a subarctic peatland under enhanced UV-B radiation. Tiiva P; Rinnan R; Faubert P; Räsänen J; Holopainen T; Kyrö E; Holopainen JK New Phytol; 2007; 176(2):346-355. PubMed ID: 17888116 [TBL] [Abstract][Full Text] [Related]
6. Isoprene Emission Response to Drought and the Impact on Global Atmospheric Chemistry. Jiang X; Guenther A; Potosnak M; Geron C; Seco R; Karl T; Kim S; Gu L; Pallardy S Atmos Environ (1994); 2018 Jun; 183():69-83. PubMed ID: 30505205 [TBL] [Abstract][Full Text] [Related]
7. Photochemical modeling of the Ozark isoprene volcano: MEGAN, BEIS, and their impacts on air quality predictions. Carlton AG; Baker KR Environ Sci Technol; 2011 May; 45(10):4438-45. PubMed ID: 21520901 [TBL] [Abstract][Full Text] [Related]
8. Canopy level emissions of 2-methyl-3-buten-2-ol, monoterpenes, and sesquiterpenes from an experimental Pinus taeda plantation. Geron CD; Daly RW; Arnts RR; Guenther AB; Mowry FL Sci Total Environ; 2016 Sep; 565():730-741. PubMed ID: 27232720 [TBL] [Abstract][Full Text] [Related]
9. Modeling the biogenic isoprene emission and its impact on ozone pollution in Zhejiang province, China. Lou C; Jiang F; Tian X; Zou Q; Zheng Y; Shen Y; Feng S; Chen J; Zhang L; Jia M; Xu J Sci Total Environ; 2023 Mar; 865():161212. PubMed ID: 36586687 [TBL] [Abstract][Full Text] [Related]
10. Contrasting responses of major and minor volatile compounds to warming and gall-infestation in the Arctic willow Salix myrsinites. Swanson L; Li T; Rinnan R Sci Total Environ; 2021 Nov; 793():148516. PubMed ID: 34174616 [TBL] [Abstract][Full Text] [Related]
11. Biogenic volatile organic compound ambient mixing ratios and emission rates in the Alaskan Arctic tundra. Angot H; McErlean K; Hu L; Millet DB; Hueber J; Cui K; Moss J; Wielgasz C; Milligan T; Ketcherside D; Bret-Harte MS; Helmig D Biogeosciences; 2020; 17(23):6219-6236. PubMed ID: 35222652 [TBL] [Abstract][Full Text] [Related]
12. Atmospheric biogenic volatile organic compounds in the Alaskan Arctic tundra: constraints from measurements at Toolik Field Station. Selimovic V; Ketcherside D; Chaliyakunnel S; Wielgasz C; Permar W; Angot H; Millet DB; Fried A; Helmig D; Hu L Atmos Chem Phys; 2022; 22(21):14037-14058. PubMed ID: 37476609 [TBL] [Abstract][Full Text] [Related]
13. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012. Geron C; Daly R; Harley P; Rasmussen R; Seco R; Guenther A; Karl T; Gu L Chemosphere; 2016 Mar; 146():8-21. PubMed ID: 26706927 [TBL] [Abstract][Full Text] [Related]
14. Airborne observations reveal elevational gradient in tropical forest isoprene emissions. Gu D; Guenther AB; Shilling JE; Yu H; Huang M; Zhao C; Yang Q; Martin ST; Artaxo P; Kim S; Seco R; Stavrakou T; Longo KM; Tóta J; de Souza RAF; Vega O; Liu Y; Shrivastava M; Alves EG; Santos FC; Leng G; Hu Z Nat Commun; 2017 May; 8():15541. PubMed ID: 28534494 [TBL] [Abstract][Full Text] [Related]
15. Warming increases isoprene emissions from an arctic fen. Lindwall F; Svendsen SS; Nielsen CS; Michelsen A; Rinnan R Sci Total Environ; 2016 May; 553():297-304. PubMed ID: 26933965 [TBL] [Abstract][Full Text] [Related]
16. Strong isoprene emission response to temperature in tundra vegetation. Seco R; Holst T; Davie-Martin CL; Simin T; Guenther A; Pirk N; Rinne J; Rinnan R Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2118014119. PubMed ID: 36095176 [TBL] [Abstract][Full Text] [Related]
17. Uncertainty in biogenic isoprene emissions and its impacts on tropospheric chemistry in East Asia. Han KM; Park RS; Kim HK; Woo JH; Kim J; Song CH Sci Total Environ; 2013 Oct; 463-464():754-71. PubMed ID: 23867846 [TBL] [Abstract][Full Text] [Related]
18. Diel Variation of Biogenic Volatile Organic Compound Emissions--A field Study in the Sub, Low and High Arctic on the Effect of Temperature and Light. Lindwall F; Faubert P; Rinnan R PLoS One; 2015; 10(4):e0123610. PubMed ID: 25897519 [TBL] [Abstract][Full Text] [Related]
19. The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species. Taylor TC; Smith MN; Slot M; Feeley KJ Plant Cell Environ; 2019 Aug; 42(8):2448-2457. PubMed ID: 30993708 [TBL] [Abstract][Full Text] [Related]
20. New particle formation in forests inhibited by isoprene emissions. Kiendler-Scharr A; Wildt J; Dal Maso M; Hohaus T; Kleist E; Mentel TF; Tillmann R; Uerlings R; Schurr U; Wahner A Nature; 2009 Sep; 461(7262):381-4. PubMed ID: 19759617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]