These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 39034725)
21. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Xu S; Olenyuk BZ; Okamoto CT; Hamm-Alvarez SF Adv Drug Deliv Rev; 2013 Jan; 65(1):121-38. PubMed ID: 23026636 [TBL] [Abstract][Full Text] [Related]
22. The influence of pulmonary surfactant on nanoparticulate drug delivery systems. Schleh C; Rothen-Rutishauser B; Kreyling WG Eur J Pharm Biopharm; 2011 Apr; 77(3):350-2. PubMed ID: 21195761 [TBL] [Abstract][Full Text] [Related]
23. Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery. Lai WF; He ZD J Control Release; 2016 Dec; 243():269-282. PubMed ID: 27746276 [TBL] [Abstract][Full Text] [Related]
24. Engineered nanoparticulate drug delivery systems: the next frontier for oral administration? Diab R; Jaafar-Maalej C; Fessi H; Maincent P AAPS J; 2012 Dec; 14(4):688-702. PubMed ID: 22767270 [TBL] [Abstract][Full Text] [Related]
25. Combining Nanoparticle Shape Modulation and Polymersome Technology in Drug Delivery. Katterman C; Pierce C; Larsen J ACS Appl Bio Mater; 2021 Apr; 4(4):2853-2862. PubMed ID: 35014381 [TBL] [Abstract][Full Text] [Related]
26. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. Banerjee A; Qi J; Gogoi R; Wong J; Mitragotri S J Control Release; 2016 Sep; 238():176-185. PubMed ID: 27480450 [TBL] [Abstract][Full Text] [Related]
27. Nasal-nanotechnology: revolution for efficient therapeutics delivery. Kumar A; Pandey AN; Jain SK Drug Deliv; 2016; 23(3):681-93. PubMed ID: 24901207 [TBL] [Abstract][Full Text] [Related]
28. Patents on nanoparticulate drug delivery systems--a review. Bhavna ; Ali M; Baboota S; Ali J Recent Pat Drug Deliv Formul; 2008; 2(1):83-9. PubMed ID: 19075900 [TBL] [Abstract][Full Text] [Related]
29. Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures. Murugan K; Choonara YE; Kumar P; Bijukumar D; du Toit LC; Pillay V Int J Nanomedicine; 2015; 10():2191-206. PubMed ID: 25834433 [TBL] [Abstract][Full Text] [Related]
30. Controlled Drug Delivery Systems: Current Status and Future Directions. Adepu S; Ramakrishna S Molecules; 2021 Sep; 26(19):. PubMed ID: 34641447 [TBL] [Abstract][Full Text] [Related]
31. Nanoparticles in drug delivery and environmental exposure: same size, same risks? Borm PJ; Müller-Schulte D Nanomedicine (Lond); 2006 Aug; 1(2):235-49. PubMed ID: 17716113 [TBL] [Abstract][Full Text] [Related]
32. pH-sensitive nano-systems for drug delivery in cancer therapy. Liu J; Huang Y; Kumar A; Tan A; Jin S; Mozhi A; Liang XJ Biotechnol Adv; 2014; 32(4):693-710. PubMed ID: 24309541 [TBL] [Abstract][Full Text] [Related]
33. Rational design of curcumin loaded multifunctional mesoporous silica nanoparticles to enhance the cytotoxicity for targeted and controlled drug release. Chen C; Sun W; Wang X; Wang Y; Wang P Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():88-96. PubMed ID: 29407161 [TBL] [Abstract][Full Text] [Related]
34. Non-spherical micro- and nanoparticles: fabrication, characterization and drug delivery applications. Mathaes R; Winter G; Besheer A; Engert J Expert Opin Drug Deliv; 2015 Mar; 12(3):481-92. PubMed ID: 25327886 [TBL] [Abstract][Full Text] [Related]
35. Engineering precision nanoparticles for drug delivery. Mitchell MJ; Billingsley MM; Haley RM; Wechsler ME; Peppas NA; Langer R Nat Rev Drug Discov; 2021 Feb; 20(2):101-124. PubMed ID: 33277608 [TBL] [Abstract][Full Text] [Related]
36. A dual-functional HER2 aptamer-conjugated, pH-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in HER2-positive breast cancer cells. Shen Y; Li M; Liu T; Liu J; Xie Y; Zhang J; Xu S; Liu H Int J Nanomedicine; 2019; 14():4029-4044. PubMed ID: 31213813 [No Abstract] [Full Text] [Related]
37. Functionally engineered nanosized particles in pharmaceutics: improved oral delivery of poorly water-soluble drugs. Ozeki T; Tagami T Curr Pharm Des; 2013; 19(35):6259-69. PubMed ID: 23470003 [TBL] [Abstract][Full Text] [Related]
38. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: current research and advances. Buse J; El-Aneed A Nanomedicine (Lond); 2010 Oct; 5(8):1237-60. PubMed ID: 21039200 [TBL] [Abstract][Full Text] [Related]
39. Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Liu Y; Liang Y; Yuhong J; Xin P; Han JL; Du Y; Yu X; Zhu R; Zhang M; Chen W; Ma Y Drug Des Devel Ther; 2024; 18():1469-1495. PubMed ID: 38707615 [TBL] [Abstract][Full Text] [Related]
40. Characteristics and mechanism associated with drug conjugated inorganic nanoparticles. Bharti S; Kaur G; Jain S; Gupta S; Tripathi SK J Drug Target; 2019 Sep; 27(8):813-829. PubMed ID: 30601068 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]