These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 39035969)

  • 1. Paper Scintillator Incorporated with Scintillator-Silica Fine Powders: Photophysical Characterization and Proof of Concept Demonstration of Tritium Detection.
    Miyoshi H; Nakamura M; Tsekrekas EM; Jacobsohn LG
    ACS Omega; 2024 Jul; 9(28):30470-30477. PubMed ID: 39035969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of paper scintillators and their effective use in radiation testing for α- and β- particles in radioactive liquid, solid, and gas contaminants.
    Miyoshi H; Nakamura M
    Appl Radiat Isot; 2024 Apr; 206():111240. PubMed ID: 38387216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of New Scintillation Imaging Material Composed of Scintillator-Silica Fine Powders and its Imaging of Tritium.
    Miyoshi H; Hiroura M; Tsujimoto K; Irikura N; Otani T; Shinohara Y
    Radiat Prot Dosimetry; 2017 May; 174(4):478-484. PubMed ID: 27664433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal neutron sensitive inorganic compound loaded thin-film composite plastic scintillators.
    Rajakrishna K; Dhanasekaran A; Yuvaraj N; Ajoy KC; Venkatraman B; Jose MT
    Appl Radiat Isot; 2022 Mar; 181():110115. PubMed ID: 35063868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. InGaN/GaN multiple quantum well for fast scintillation application: radioluminescence and photoluminescence study.
    Hospodková A; Nikl M; Pacherová O; Oswald J; Brůža P; Pánek D; Foltynski B; Hulicius E; Beitlerová A; Heuken M
    Nanotechnology; 2014 Nov; 25(45):455501. PubMed ID: 25327948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoluminescence and scintillation characteristics of Bi-loaded PVK-based plastic scintillators for the high counting-rate measurement of high-energy X-rays.
    Sato A; Magi A; Koshimizu M; Fujimoto Y; Kishimoto S; Asai K
    RSC Adv; 2021 Apr; 11(26):15581-15589. PubMed ID: 35481211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of a new liquid-solid scintillator, a mixture of DPO, POPOP and Epon 812, for enhancement of autoradiograms with tritium agents.
    Nishimaki T; Furudate S
    J Vet Med Sci; 1998 Jul; 60(7):795-7. PubMed ID: 9713805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative investigation of scintillator intensification for light and electron microscope radioautography.
    Kopriwa BM
    Histochemistry; 1980; 68(3):265-79. PubMed ID: 7462004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circularly Polarized Radioluminescence from Chiral Perovskite Scintillators for Improved X-ray Imaging.
    Li M; Wang Y; Yang L; Chai Z; Wang Y; Wang S
    Angew Chem Int Ed Engl; 2022 Sep; 61(37):e202208440. PubMed ID: 35859274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standardization of tritiated water and 204Tl by TDCR liquid scintillation counting.
    Razdolescu AC; Cassette P
    Appl Radiat Isot; 2004; 60(2-4):493-7. PubMed ID: 14987691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new tritiated water measurement method with plastic scintillator pellets.
    Furuta E; Iwasaki N; Kato Y; Tomozoe Y
    Isotopes Environ Health Stud; 2016; 52(4-5):560-6. PubMed ID: 26856930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Efficiency Down-Conversion Radiation Fluorescence and Ultrafast Photoluminescence (1.2 ns) at the Interface of Hybrid Cs
    Ding Y; Lin R; Liang Y; Zheng W; Chen L; Ouyang X; Ouyang X; Huang F
    J Phys Chem Lett; 2021 Aug; 12(30):7342-7349. PubMed ID: 34323502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transparent Microcomposite Films Based on a Ce-Doped Li
    Zhou X; Wang CL; Wang Y
    ACS Omega; 2022 Sep; 7(35):31567-31576. PubMed ID: 36092621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bright Lu
    Sengupta D; Miller S; Marton Z; Chin F; Nagarkar V; Pratx G
    Adv Healthc Mater; 2015 Oct; 4(14):2064-2070. PubMed ID: 26183115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the Potential of Perovskite Nanocrystal-Doped Liquid Scintillator: A Feasibility Study.
    Kim NR; Joo KK; Lee HG
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of tritiated water vapor by non-volatile liquid scintillant sorbent.
    Kato T
    Int J Appl Radiat Isot; 1983 Dec; 34(12):1593-5. PubMed ID: 6668085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanosecond and Highly Sensitive Scintillator Based on All-Inorganic Perovskite Single Crystals.
    Li Y; Chen L; Gao R; Liu B; Zheng W; Zhu Y; Ruan J; Ouyang X; Xu Q
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1489-1495. PubMed ID: 34962385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of Liquid Scintillators Loaded with 6-Phenylhexanoic Acid-Modified ZrO
    Watanabe A; Magi A; Yoko A; Seong G; Tomai T; Adschiri T; Hayashi Y; Koshimizu M; Fujimoto Y; Asai K
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33925291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Quality Cs
    Zhou W; Zhu X; Yu J; Mou D; Li H; Kong L; Lang T; Peng L; Chen W; Xu X; Liu B
    ACS Appl Mater Interfaces; 2023 Aug; 15(32):38741-38749. PubMed ID: 37535426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of paper scintillator for detecting 3H contaminant.
    Miyoshi H; Ikeda T
    Radiat Prot Dosimetry; 2013 Sep; 156(3):277-82. PubMed ID: 23554426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.