These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 39036062)

  • 1. Unified Simulation Platform for Interference Microscopy.
    Hitzelhammer F; Dostálová A; Zykov I; Platzer B; Conrad-Billroth C; Juffmann T; Hohenester U
    ACS Photonics; 2024 Jul; 11(7):2745-2756. PubMed ID: 39036062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational nanosensing from defocus in single particle interferometric reflectance microscopy.
    Yurdakul C; Ünlü MS
    Opt Lett; 2020 Dec; 45(23):6546-6549. PubMed ID: 33258864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced sensitivity in dark-field microscopy by optimizing the illumination angle.
    Taylor MA; Bowen WP
    Appl Opt; 2013 Aug; 52(23):5718-23. PubMed ID: 23938424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dark field imaging of high aspect ratio structures - a simple model.
    Syms RRA; Kwan FY; Sydoruk O
    Opt Express; 2023 Nov; 31(23):39279-39291. PubMed ID: 38018010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle.
    Woehl T; Keller R
    Ultramicroscopy; 2016 Dec; 171():166-176. PubMed ID: 27690347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the full scattering matrix using coherent Fourier scatterometry.
    Kumar N; Cisotto L; Roy S; Ramanandan GK; Pereira SF; Paul Urbach H
    Appl Opt; 2016 Jun; 55(16):4408-13. PubMed ID: 27411195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unified framework for packing deformable and non-deformable subcellular structures in crowded cryo-electron tomogram simulation.
    Liu S; Ban X; Zeng X; Zhao F; Gao Y; Wu W; Zhang H; Chen F; Hall T; Gao X; Xu M
    BMC Bioinformatics; 2020 Sep; 21(1):399. PubMed ID: 32907544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vectorial, high numerical aperture study of Nomarski's differential interference contrast microscope.
    Munro P; Török P
    Opt Express; 2005 Sep; 13(18):6833-47. PubMed ID: 19498701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical study of effects of light polarization, scatterer sizes and orientations on near-field coherent anti-Stokes Raman scattering microscopy.
    Lin J; Wang H; Zheng W; Lu F; Sheppard C; Huang Z
    Opt Express; 2009 Feb; 17(4):2423-34. PubMed ID: 19219145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interferometric Scattering Microscopy: Seeing Single Nanoparticles and Molecules via Rayleigh Scattering.
    Taylor RW; Sandoghdar V
    Nano Lett; 2019 Aug; 19(8):4827-4835. PubMed ID: 31314539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps.
    Schnell M; Garcia-Etxarri A; Alkorta J; Aizpurua J; Hillenbrand R
    Nano Lett; 2010 Sep; 10(9):3524-8. PubMed ID: 20701270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.
    Jiang L; Yin T; Dong Z; Liao M; Tan SJ; Goh XM; Allioux D; Hu H; Li X; Yang JK; Shen Z
    ACS Nano; 2015 Oct; 9(10):10039-46. PubMed ID: 26344543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building a virtual simulation platform for quasistatic breast ultrasound elastography using open source software: A preliminary investigation.
    Wang Y; Helminen E; Jiang J
    Med Phys; 2015 Sep; 42(9):5453-66. PubMed ID: 26328994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy.
    Davis BJ; Schlachter SC; Marks DL; Ralston TS; Boppart SA; Carney PS
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2527-42. PubMed ID: 17767224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COMETS2: An advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation.
    Lee C; Jung YJ; Lee SJ; Im CH
    J Neurosci Methods; 2017 Feb; 277():56-62. PubMed ID: 27989592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SpinDoctor: A MATLAB toolbox for diffusion MRI simulation.
    Li JR; Nguyen VD; Tran TN; Valdman J; Trang CB; Nguyen KV; Vu DTS; Tran HA; Tran HTA; Nguyen TMP
    Neuroimage; 2019 Nov; 202():116120. PubMed ID: 31470126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epp: A C++ EGSnrc user code for x-ray imaging and scattering simulations.
    Lippuner J; Elbakri IA; Cui C; Ingleby HR
    Med Phys; 2011 Mar; 38(3):1705-8. PubMed ID: 21520883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of sample pool on interference pattern in defocused interferometric particle imaging.
    Zhang H; Zhou Y; Liu J; Jia D; Liu T
    Rev Sci Instrum; 2017 Apr; 88(4):043302. PubMed ID: 28456267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-field effects on coherent anti-Stokes Raman scattering microscopy imaging.
    Liu C; Huang Z; Lu F; Zheng W; Hutmacher DW; Sheppard C
    Opt Express; 2007 Apr; 15(7):4118-31. PubMed ID: 19532655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of scatterers' sizes on near-field coherent anti-Stokes Raman scattering under tightly focused radially and linearly polarized light excitation.
    Lin J; Zheng W; Wang H; Huang Z
    Opt Express; 2010 May; 18(10):10888-95. PubMed ID: 20588944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.