These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 39036956)

  • 1. Complete list of canonical post-transcriptional modifications in the Bacillus subtilis ribosome and their link to RbgA driven large subunit assembly.
    Popova AM; Jain N; Dong X; Abdollah-Nia F; Britton RA; Williamson JR
    Nucleic Acids Res; 2024 Oct; 52(18):11203-11217. PubMed ID: 39036956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete list of canonical post-transcriptional modifications in the
    Popova AM; Jain N; Dong X; Abdollah-Nia F; Britton RA; Williamson JR
    bioRxiv; 2024 May; ():. PubMed ID: 38765983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional interaction between ribosomal protein L6 and RbgA during ribosome assembly.
    Gulati M; Jain N; Davis JH; Williamson JR; Britton RA
    PLoS Genet; 2014 Oct; 10(10):e1004694. PubMed ID: 25330043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between Bacillus subtilis YsxC and ribosomes (or rRNAs).
    Wicker-Planquart C; Jault JM
    FEBS Lett; 2015 Apr; 589(9):1026-32. PubMed ID: 25771857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA Post-transcriptional Modifications of an Early-Stage Large-Subunit Ribosomal Intermediate.
    Narayan G; Gracia Mazuca LA; Cho SS; Mohl JE; Koculi E
    Biochemistry; 2023 Oct; 62(20):2908-2915. PubMed ID: 37751522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosomal RNA modification enzymes stimulate large ribosome subunit assembly in E. coli.
    Ero R; Leppik M; Reier K; Liiv A; Remme J
    Nucleic Acids Res; 2024 Jun; 52(11):6614-6628. PubMed ID: 38554109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical characterization of ribosome assembly GTPase RbgA in Bacillus subtilis.
    Achila D; Gulati M; Jain N; Britton RA
    J Biol Chem; 2012 Mar; 287(11):8417-23. PubMed ID: 22267738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of a dominant negative mutant of Bacillus subtilis GTP-binding protein, YlqF, essential for biogenesis and maintenance of the 50 S ribosomal subunit.
    Matsuo Y; Oshima T; Loh PC; Morimoto T; Ogasawara N
    J Biol Chem; 2007 Aug; 282(35):25270-7. PubMed ID: 17613524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The essential GTPase YqeH is required for proper ribosome assembly in Bacillus subtilis.
    Uicker WC; Schaefer L; Koenigsknecht M; Britton RA
    J Bacteriol; 2007 Apr; 189(7):2926-9. PubMed ID: 17237168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural consequences of the interaction of RbgA with a 50S ribosomal subunit assembly intermediate.
    Seffouh A; Jain N; Jahagirdar D; Basu K; Razi A; Ni X; Guarné A; Britton RA; Ortega J
    Nucleic Acids Res; 2019 Nov; 47(19):10414-10425. PubMed ID: 31665744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subribosomal particle analysis reveals the stages of bacterial ribosome assembly at which rRNA nucleotides are modified.
    Siibak T; Remme J
    RNA; 2010 Oct; 16(10):2023-32. PubMed ID: 20719918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orthogonal translation enables heterologous ribosome engineering in E. coli.
    Kolber NS; Fattal R; Bratulic S; Carver GD; Badran AH
    Nat Commun; 2021 Jan; 12(1):599. PubMed ID: 33500394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly and functionality of the ribosome with tethered subunits.
    Aleksashin NA; Leppik M; Hockenberry AJ; Klepacki D; Vázquez-Laslop N; Jewett MC; Remme J; Mankin AS
    Nat Commun; 2019 Feb; 10(1):930. PubMed ID: 30804338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of the ribosome assembly GTPase RbgA provides insight into ribosome interaction and ribosome-stimulated GTPase activation.
    Gulati M; Jain N; Anand B; Prakash B; Britton RA
    Nucleic Acids Res; 2013 Mar; 41(5):3217-27. PubMed ID: 23325847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NusG-Dependent RNA Polymerase Pausing and Tylosin-Dependent Ribosome Stalling Are Required for Tylosin Resistance by Inducing 23S rRNA Methylation in Bacillus subtilis.
    Yakhnin H; Yakhnin AV; Mouery BL; Mandell ZF; Karbasiafshar C; Kashlev M; Babitzke P
    mBio; 2019 Nov; 10(6):. PubMed ID: 31719185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical steps in the assembly process of the bacterial 50S ribosomal subunit.
    Seffouh A; Nikolay R; Ortega J
    Nucleic Acids Res; 2024 May; 52(8):4111-4123. PubMed ID: 38554105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The essential nature of YqfG, a YbeY homologue required for 3' maturation of Bacillus subtilis 16S ribosomal RNA is suppressed by deletion of RNase R.
    Baumgardt K; Gilet L; Figaro S; Condon C
    Nucleic Acids Res; 2018 Sep; 46(16):8605-8615. PubMed ID: 29873764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of Ribosomal Protein S14 Demonstrated by the Reconstruction of Chimeric Ribosomes in Bacillus subtilis.
    Akanuma G; Kawamura F; Watanabe S; Watanabe M; Okawa F; Natori Y; Nanamiya H; Asai K; Chibazakura T; Yoshikawa H; Soma A; Hishida T; Kato-Yamada Y
    J Bacteriol; 2021 Apr; 203(10):. PubMed ID: 33649148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RbgA ensures the correct timing in the maturation of the 50S subunits functional sites.
    Seffouh A; Trahan C; Wasi T; Jain N; Basu K; Britton RA; Oeffinger M; Ortega J
    Nucleic Acids Res; 2022 Oct; 50(19):10801-10816. PubMed ID: 35141754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical probing for examining the structure of modified RNAs and ligand binding to RNA.
    Waduge P; Sakakibara Y; Chow CS
    Methods; 2019 Mar; 156():110-120. PubMed ID: 30391513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.