These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 39037460)
1. Improving the performance of kesterite solar cells by solution germanium alloying. Xiang S; Li Y; Xiang C; Liu H; Zheng Y; Wang S; Yan W; Xin H Phys Chem Chem Phys; 2024 Jul; 26(30):20645-20652. PubMed ID: 39037460 [TBL] [Abstract][Full Text] [Related]
2. Kesterite Cu2Zn(Sn,Ge)(S,Se)4 thin film with controlled Ge-doping for photovoltaic application. Zhao W; Pan D; Liu SF Nanoscale; 2016 May; 8(19):10160-5. PubMed ID: 27121893 [TBL] [Abstract][Full Text] [Related]
3. Substitution of Ag for Cu in Cu Wu Y; Sui Y; He W; Zeng F; Wang Z; Wang F; Yao B; Yang L Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31947756 [TBL] [Abstract][Full Text] [Related]
4. Doping of Sb into Cu Zhao B; Deng Y; Cao L; Zhu J; Zhou Z Front Chem; 2022; 10():974761. PubMed ID: 36017168 [TBL] [Abstract][Full Text] [Related]
5. Kesterite Cu2ZnSn(S,Se)4 Solar Cells with beyond 8% Efficiency by a Sol-Gel and Selenization Process. Liu F; Zeng F; Song N; Jiang L; Han Z; Su Z; Yan C; Wen X; Hao X; Liu Y ACS Appl Mater Interfaces; 2015 Jul; 7(26):14376-83. PubMed ID: 26080031 [TBL] [Abstract][Full Text] [Related]
6. Two-Step Annealing CZTSSe/CdS Heterojunction to Improve Interface Properties of Kesterite Solar Cells. Duan B; Lou L; Meng F; Zhou J; Wang J; Shi J; Wu H; Luo Y; Li D; Meng Q ACS Appl Mater Interfaces; 2021 Nov; 13(46):55243-55253. PubMed ID: 34751555 [TBL] [Abstract][Full Text] [Related]
7. Unveiling the Role of Ge in CZTSSe Solar Cells by Advanced Micro-To-Atom Scale Characterizations. Cong J; He M; Jang JS; Huang J; Privat K; Chen YS; Li J; Yang L; Green MA; Kim JH; Cairney JM; Hao X Adv Sci (Weinh); 2024 Apr; 11(15):e2305938. PubMed ID: 38342621 [TBL] [Abstract][Full Text] [Related]
8. Cation Substitution in Earth-Abundant Kesterite Photovoltaic Materials. Li J; Wang D; Li X; Zeng Y; Zhang Y Adv Sci (Weinh); 2018 Apr; 5(4):1700744. PubMed ID: 29721421 [TBL] [Abstract][Full Text] [Related]
10. Kesterite Solar Cells: Insights into Current Strategies and Challenges. He M; Yan C; Li J; Suryawanshi MP; Kim J; Green MA; Hao X Adv Sci (Weinh); 2021 May; 8(9):2004313. PubMed ID: 33977066 [TBL] [Abstract][Full Text] [Related]
11. Cadmium-Free Kesterite Thin-Film Solar Cells with High Efficiency Approaching 12. Ahmad N; Zhao Y; Ye F; Zhao J; Chen S; Zheng Z; Fan P; Yan C; Li Y; Su Z; Zhang X; Liang G Adv Sci (Weinh); 2023 Sep; 10(26):e2302869. PubMed ID: 37391392 [TBL] [Abstract][Full Text] [Related]
12. A Facile Process for Partial Ag Substitution in Kesterite Cu Gang MG; Karade VC; Suryawanshi MP; Yoo H; He M; Hao X; Lee IJ; Lee BH; Shin SW; Kim JH ACS Appl Mater Interfaces; 2021 Jan; 13(3):3959-3968. PubMed ID: 33463150 [TBL] [Abstract][Full Text] [Related]
13. Improving the Device Performance of CZTSSe Thin-Film Solar Cells via Indium Doping. Korade SD; Gour KS; Karade VC; Jang JS; Rehan M; Patil SS; Bhat TS; Patil AP; Yun JH; Park J; Kim JH; Patil PS ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38047907 [TBL] [Abstract][Full Text] [Related]
14. Segmented Control of Selenization Environment for High-Quality Cu Jian Y; Han L; Kong X; Xie T; Kou D; Zhou W; Zhou Z; Yuan S; Meng Y; Qi Y; Liang G; Zhang X; Zheng Z; Wu S Small Methods; 2024 May; ():e2400041. PubMed ID: 38766987 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Carrier Collection in Cd/In-Based Dual Buffers in Kesterite Thin-Film Solar Cells from Nanoparticle Inks. Campbell S; Zoppi G; Bowen L; Maiello P; Barrioz V; Beattie NS; Qu Y ACS Appl Energy Mater; 2023 Nov; 6(21):10883-10896. PubMed ID: 38020741 [TBL] [Abstract][Full Text] [Related]
16. Effect of Magnesium Incorporation on Solution-Processed Kesterite Solar Cells. Caballero R; Haass SG; Andres C; Arques L; Oliva F; Izquierdo-Roca V; Romanyuk YE Front Chem; 2018; 6():5. PubMed ID: 29435446 [TBL] [Abstract][Full Text] [Related]
17. Tuning Bandgap of p-Type Cu Yi Q; Wu J; Zhao J; Wang H; Hu J; Dai X; Zou G ACS Appl Mater Interfaces; 2017 Jan; 9(2):1602-1608. PubMed ID: 27996233 [TBL] [Abstract][Full Text] [Related]
18. Revealing the reason for enhanced CZTSSe device performance after Ag heavily doped into absorber surface. Wang S; Shen Z; Liu Y; Zhang Y J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38445737 [TBL] [Abstract][Full Text] [Related]
19. Ge Bidirectional Diffusion to Simultaneously Engineer Back Interface and Bulk Defects in the Absorber for Efficient CZTSSe Solar Cells. Wang J; Zhou J; Xu X; Meng F; Xiang C; Lou L; Yin K; Duan B; Wu H; Shi J; Luo Y; Li D; Xin H; Meng Q Adv Mater; 2022 Jul; 34(27):e2202858. PubMed ID: 35523720 [TBL] [Abstract][Full Text] [Related]
20. Fostering Charge Carrier Transport and Absorber Growth Properties in CZTSSe Thin Films with an ALD-SnO Gour KS; Pawar PS; Lee M; Karade VC; Yun JS; Heo J; Park J; Yun JH; Kim JH ACS Appl Mater Interfaces; 2024 Jun; 16(23):30010-30019. PubMed ID: 38814930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]