These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 39037466)

  • 21. [Pattern formation in microcosm: the role of self-assembly in complex biological envelopes development].
    Gabaraeva NI; Hemsley AR
    Zh Obshch Biol; 2010; 71(4):310-36. PubMed ID: 20865932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pollen and anther ontogeny in Cabomba caroliniana (Cabombaceae, Nymphaeales).
    Taylor ML; Gutman BL; Melrose NA; Ingraham AM; Schwartz JA; Osborn JM
    Am J Bot; 2008 Apr; 95(4):399-413. PubMed ID: 21632364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrastructure of microsporogenesis and microgametogenesis in Brachypodium distachyon.
    Sharma A; Singh MB; Bhalla PL
    Protoplasma; 2015 Nov; 252(6):1575-86. PubMed ID: 25772681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microspore-expressed SCULP1 is required for p-coumaroylation of sporopollenin, exine integrity, and pollen development in wheat.
    Xu L; Tang Y; Yang Y; Wang D; Wang H; Du J; Bai Y; Su S; Zhao C; Li L
    New Phytol; 2023 Jul; 239(1):102-115. PubMed ID: 36994607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sporoderm development in Acer tataricum (Aceraceae): an interpretation.
    Gabarayeva NI; Grigorjeva VV; Rowley JR
    Protoplasma; 2010 Nov; 247(1-2):65-81. PubMed ID: 20431899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pollen structure and development in Nymphaeales: insights into character evolution in an ancient angiosperm lineage.
    Taylor ML; Cooper RL; Schneider EL; Osborn JM
    Am J Bot; 2015 Oct; 102(10):1685-702. PubMed ID: 26419810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pollen ontogeny in Brasenia (Cabombaceae, Nymphaeales).
    Taylor ML; Osborn JM
    Am J Bot; 2006 Mar; 93(3):344-56. PubMed ID: 21646195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pollen wall development in Olea europaea L.
    Fernández MC; Rodríguez-García MI
    New Phytol; 1988 Jan; 108(1):91-99. PubMed ID: 33873924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conventional and novel modes of exine patterning in members of the Araceae--the consequence of ecological paradigm shifts?
    Hesse M
    Protoplasma; 2006 Aug; 228(1-3):145-9. PubMed ID: 16937068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana.
    Quilichini TD; Douglas CJ; Samuels AL
    Ann Bot; 2014 Oct; 114(6):1189-201. PubMed ID: 24723448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative exine ontogeny in some members of the family Zygophyllaceae sensu lato.
    Nasri-Ayachi MB; Nabli MA
    Protoplasma; 2006 Aug; 228(1-3):49-53. PubMed ID: 16937054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation pattern and regulatory mechanisms of pollen wall in Arabidopsis.
    Ma X; Wu Y; Zhang G
    J Plant Physiol; 2021 May; 260():153388. PubMed ID: 33706055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen.
    Choi H; Jin JY; Choi S; Hwang JU; Kim YY; Suh MC; Lee Y
    Plant J; 2011 Jan; 65(2):181-93. PubMed ID: 21223384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new ultra-high pressure liquid chromatography method for the determination of antioxidant flavonol aglycones in six Lysimachia species.
    Tóth A; Végh K; Alberti Á; Béni S; Kéry Á
    Nat Prod Res; 2016 Oct; 30(20):2372-7. PubMed ID: 27104751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Sporopollenin accumulation in Nicotiana tabacum L. microspore wall during its development].
    Matveeva NP; Polevova SV; Smirnova AV; Ermakov IP
    Tsitologiia; 2012; 54(2):176-84. PubMed ID: 22590931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Loss of THIN EXINE2 disrupts multiple processes in the mechanism of pollen exine formation.
    Wang R; Dobritsa AA
    Plant Physiol; 2021 Sep; 187(1):133-157. PubMed ID: 34618131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphology and structure of the pollen cone and pollen grain of the Araucaria species from Argentina.
    Del Fueyo GM; Caccavari MA; Dome EA
    Biocell; 2008 Apr; 32(1):49-60. PubMed ID: 18669323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Male gametophyte development in bread wheat (Triticum aestivum L.): molecular, cellular, and biochemical analyses of a sporophytic contribution to pollen wall ontogeny.
    Wang A; Xia Q; Xie W; Dumonceaux T; Zou J; Datla R; Selvaraj G
    Plant J; 2002 Jun; 30(6):613-23. PubMed ID: 12061894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Arabidopsis Exine Formation Defect (EFD) gene is required for primexine patterning and is critical for pollen fertility.
    Hu J; Wang Z; Zhang L; Sun MX
    New Phytol; 2014 Jul; 203(1):140-54. PubMed ID: 24697753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A glycine-rich protein that facilitates exine formation during tomato pollen development.
    McNeil KJ; Smith AG
    Planta; 2010 Mar; 231(4):793-808. PubMed ID: 20033228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.