These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 39037466)
41. Ontogeny of the pollinium in Hoya carnosa provides new insights into microsporogenesis. Kuang YF; Jia RZ; Balslev H; Liao JP Plant Reprod; 2023 Jun; 36(2):193-211. PubMed ID: 36763160 [TBL] [Abstract][Full Text] [Related]
42. Development of the permanent tetrad wall in Juncus L. (Juncaceae, Poales). Passarini Lopes F; Oriani A; Coan AI Protoplasma; 2021 May; 258(3):495-506. PubMed ID: 33159257 [TBL] [Abstract][Full Text] [Related]
43. Defective Microspore Development 1 is required for microspore cell integrity and pollen wall formation in rice. Ren L; Zhao T; Zhang L; Du G; Shen Y; Tang D; Li Y; Luo Q; Cheng Z Plant J; 2020 Aug; 103(4):1446-1459. PubMed ID: 32391618 [TBL] [Abstract][Full Text] [Related]
44. The role of lateral and vertical herkogamy in the divergence of the blue- and red-flowered lineages of Lysimachia arvensis. Jiménez-López FJ; Ortiz PL; Talavera M; Pannell JR; Arista M Ann Bot; 2020 Jun; 125(7):1127-1135. PubMed ID: 32185392 [TBL] [Abstract][Full Text] [Related]
45. Contribution of individual flavonoids in Lysimachia species to the antioxidant capacity based on HPLC-DPPH assay. Toth A; Riethmuller E; Vegh K; Alberti A; Beni S; Kery A Nat Prod Res; 2018 Sep; 32(17):2058-2061. PubMed ID: 28750545 [TBL] [Abstract][Full Text] [Related]
46. Pollen Cell Wall Patterns Form from Modulated Phases. Radja A; Horsley EM; Lavrentovich MO; Sweeney AM Cell; 2019 Feb; 176(4):856-868.e10. PubMed ID: 30735635 [TBL] [Abstract][Full Text] [Related]
47. Pollen wall development in flowering plants. Blackmore S; Wortley AH; Skvarla JJ; Rowley JR New Phytol; 2007; 174(3):483-498. PubMed ID: 17447905 [TBL] [Abstract][Full Text] [Related]
48. The biosynthesis, composition and assembly of the outer pollen wall: A tough case to crack. Quilichini TD; Grienenberger E; Douglas CJ Phytochemistry; 2015 May; 113():170-82. PubMed ID: 24906292 [TBL] [Abstract][Full Text] [Related]
49. Ultrastructural characterization of exine development of the transient defective exine 1 mutant suggests the existence of a factor involved in constructing reticulate exine architecture from sporopollenin aggregates. Ariizumi T; Kawanabe T; Hatakeyama K; Sato S; Kato T; Tabata S; Toriyama K Plant Cell Physiol; 2008 Jan; 49(1):58-67. PubMed ID: 18045813 [TBL] [Abstract][Full Text] [Related]
50. Ultrastructural study of pollen and tapetum development in Hydrocleys nymphoides, Alisma plantago-aquatica, and Sagittaria montevidensis (Alismataceae). Nicolau MR; Reposi SD; Bonasora MG; Zarlavsky GE; Galati BG; Gotelli MM Protoplasma; 2024 Sep; ():. PubMed ID: 39271488 [TBL] [Abstract][Full Text] [Related]
51. Plastome evolution and phylogenomic insights into the evolution of Lysimachia (Primulaceae: Myrsinoideae). Liu TJ; Zhang SY; Wei L; Lin W; Yan HF; Hao G; Ge XJ BMC Plant Biol; 2023 Jul; 23(1):359. PubMed ID: 37452336 [TBL] [Abstract][Full Text] [Related]
52. Role of Lipid Metabolism in Plant Pollen Exine Development. Zhang D; Shi J; Yang X Subcell Biochem; 2016; 86():315-37. PubMed ID: 27023241 [TBL] [Abstract][Full Text] [Related]
53. Degradation of de-esterified pctin/homogalacturonan by the polygalacturonase GhNSP is necessary for pollen exine formation and male fertility in cotton. Wu Y; Li X; Li Y; Ma H; Chi H; Ma Y; Yang J; Xie S; Zhang R; Liu L; Su X; Lv R; Khan AH; Kong J; Guo X; Lindsey K; Min L; Zhang X Plant Biotechnol J; 2022 Jun; 20(6):1054-1068. PubMed ID: 35114063 [TBL] [Abstract][Full Text] [Related]
54. A unique pollen wall mutation in the family Compositae: ultrastructure and genetics. Jackson RC; Skvarla JJ; Chissoe WF Am J Bot; 2000 Nov; 87(11):1571-7. PubMed ID: 11080106 [TBL] [Abstract][Full Text] [Related]
55. Sequential Deposition and Remodeling of Cell Wall Polymers During Tomato Pollen Development. Jaffri SRF; MacAlister CA Front Plant Sci; 2021; 12():703713. PubMed ID: 34386029 [TBL] [Abstract][Full Text] [Related]
56. Volatiles of Lysimachia paridiformis Var. Stenophylla, Lysimachia fortumei and Lysimachia chikungensis by HS-SPME-GC-MS. Wei JF; Yin ZH; Kang WY Afr J Tradit Complement Altern Med; 2014; 11(3):70-5. PubMed ID: 25371565 [TBL] [Abstract][Full Text] [Related]
57. Anther, pollen and tapetum development in safflower, Carthamus tinctorius L. Yeung EC; Oinam GS; Yeung SS; Harry I Sex Plant Reprod; 2011 Dec; 24(4):307-17. PubMed ID: 21573927 [TBL] [Abstract][Full Text] [Related]
58. ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. Qin P; Tu B; Wang Y; Deng L; Quilichini TD; Li T; Wang H; Ma B; Li S Plant Cell Physiol; 2013 Jan; 54(1):138-54. PubMed ID: 23220695 [TBL] [Abstract][Full Text] [Related]
59. Members of the ELMOD protein family specify formation of distinct aperture domains on the Zhou Y; Amom P; Reeder SH; Lee BH; Helton A; Dobritsa AA Elife; 2021 Sep; 10():. PubMed ID: 34591014 [TBL] [Abstract][Full Text] [Related]
60. OsSNDP4, a Sec14-nodulin Domain Protein, is Required for Pollen Development in Rice. Xu W; Peng X; Li Y; Zeng X; Yan W; Wang C; Wang CR; Chen S; Xu C; Tang X Rice (N Y); 2024 Aug; 17(1):54. PubMed ID: 39207611 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]