These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 39038076)

  • 1. Speech and music recruit frequency-specific distributed and overlapping cortical networks.
    Te Rietmolen N; Mercier MR; Trébuchon A; Morillon B; Schön D
    Elife; 2024 Jul; 13():. PubMed ID: 39038076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The peri-Sylvian cortical network underlying single word repetition revealed by electrocortical stimulation and direct neural recordings.
    Leonard MK; Cai R; Babiak MC; Ren A; Chang EF
    Brain Lang; 2019 Jun; 193():58-72. PubMed ID: 27450996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Song and speech: brain regions involved with perception and covert production.
    Callan DE; Tsytsarev V; Hanakawa T; Callan AM; Katsuhara M; Fukuyama H; Turner R
    Neuroimage; 2006 Jul; 31(3):1327-42. PubMed ID: 16546406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neural population selective for song in human auditory cortex.
    Norman-Haignere SV; Feather J; Boebinger D; Brunner P; Ritaccio A; McDermott JH; Schalk G; Kanwisher N
    Curr Biol; 2022 Apr; 32(7):1470-1484.e12. PubMed ID: 35196507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From air oscillations to music and speech: functional magnetic resonance imaging evidence for fine-tuned neural networks in audition.
    Tervaniemi M; Szameitat AJ; Kruck S; Schröger E; Alter K; De Baene W; Friederici AD
    J Neurosci; 2006 Aug; 26(34):8647-52. PubMed ID: 16928852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Envelope reconstruction of speech and music highlights stronger tracking of speech at low frequencies.
    Zuk NJ; Murphy JW; Reilly RB; Lalor EC
    PLoS Comput Biol; 2021 Sep; 17(9):e1009358. PubMed ID: 34534211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distributed neural signatures of natural audiovisual speech and music in the human auditory cortex.
    Salmi J; Koistinen OP; Glerean E; Jylänki P; Vehtari A; Jääskeläinen IP; Mäkelä S; Nummenmaa L; Nummi-Kuisma K; Nummi I; Sams M
    Neuroimage; 2017 Aug; 157():108-117. PubMed ID: 27932074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrocorticographic language mapping with a listening task consisting of alternating speech and music phrases.
    Mooij AH; Huiskamp GJM; Gosselaar PH; Ferrier CH
    Clin Neurophysiol; 2016 Feb; 127(2):1113-1119. PubMed ID: 26386644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG-based classification of natural sounds reveals specialized responses to speech and music.
    Zuk NJ; Teoh ES; Lalor EC
    Neuroimage; 2020 Apr; 210():116558. PubMed ID: 31962174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Music listening engages specific cortical regions within the temporal lobes: differences between musicians and non-musicians.
    Angulo-Perkins A; Aubé W; Peretz I; Barrios FA; Armony JL; Concha L
    Cortex; 2014 Oct; 59():126-37. PubMed ID: 25173956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human neuromagnetic steady-state responses to amplitude-modulated tones, speech, and music.
    Lamminmäki S; Parkkonen L; Hari R
    Ear Hear; 2014; 35(4):461-7. PubMed ID: 24603544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Music training enhances the automatic neural processing of foreign speech sounds.
    Intartaglia B; White-Schwoch T; Kraus N; Schön D
    Sci Rep; 2017 Oct; 7(1):12631. PubMed ID: 28974695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural entrainment to music is sensitive to melodic spectral complexity.
    Wollman I; Arias P; Aucouturier JJ; Morillon B
    J Neurophysiol; 2020 Mar; 123(3):1063-1071. PubMed ID: 32023136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical linear encoding and decoding of sounds: Similarities and differences between naturalistic speech and music listening.
    Simon A; Bech S; Loquet G; Østergaard J
    Eur J Neurosci; 2024 Apr; 59(8):2059-2074. PubMed ID: 38303522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.
    Berezutskaya J; Freudenburg ZV; Güçlü U; van Gerven MAJ; Ramsey NF
    J Neurosci; 2017 Aug; 37(33):7906-7920. PubMed ID: 28716965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inherent auditory skills rather than formal music training shape the neural encoding of speech.
    Mankel K; Bidelman GM
    Proc Natl Acad Sci U S A; 2018 Dec; 115(51):13129-13134. PubMed ID: 30509989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-range synchrony in the gamma band: role in music perception.
    Bhattacharya J; Petsche H; Pereda E
    J Neurosci; 2001 Aug; 21(16):6329-37. PubMed ID: 11487656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deriving Electrophysiological Brain Network Connectivity via Tensor Component Analysis During Freely Listening to Music.
    Zhu Y; Liu J; Mathiak K; Ristaniemi T; Cong F
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):409-418. PubMed ID: 31869796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of electrocorticographic (ECoG) activity in human temporal and frontal cortical areas during music listening.
    Potes C; Gunduz A; Brunner P; Schalk G
    Neuroimage; 2012 Jul; 61(4):841-8. PubMed ID: 22537600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discerning the functional networks behind processing of music and speech through human vocalizations.
    Angulo-Perkins A; Concha L
    PLoS One; 2019; 14(10):e0222796. PubMed ID: 31600231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.