These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Simple and Reproducible Sample Preparation for Single-Shot Phosphoproteomics with High Sensitivity. Jersie-Christensen RR; Sultan A; Olsen JV Methods Mol Biol; 2016; 1355():251-60. PubMed ID: 26584931 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of different phospho-tyrosine antibodies for label-free phosphoproteomics. van der Mijn JC; Labots M; Piersma SR; Pham TV; Knol JC; Broxterman HJ; Verheul HM; Jiménez CR J Proteomics; 2015 Sep; 127(Pt B):259-63. PubMed ID: 25890253 [TBL] [Abstract][Full Text] [Related]
4. Phosphopeptide enrichment using offline titanium dioxide columns for phosphoproteomics. Yu LR; Veenstra T Methods Mol Biol; 2013; 1002():93-103. PubMed ID: 23625397 [TBL] [Abstract][Full Text] [Related]
5. A data-independent acquisition-based global phosphoproteomics system enables deep profiling. Kitata RB; Choong WK; Tsai CF; Lin PY; Chen BS; Chang YC; Nesvizhskii AI; Sung TY; Chen YJ Nat Commun; 2021 May; 12(1):2539. PubMed ID: 33953186 [TBL] [Abstract][Full Text] [Related]
6. Identifying novel targets of oncogenic EGF receptor signaling in lung cancer through global phosphoproteomics. Zhang X; Belkina N; Jacob HK; Maity T; Biswas R; Venugopalan A; Shaw PG; Kim MS; Chaerkady R; Pandey A; Guha U Proteomics; 2015 Jan; 15(2-3):340-55. PubMed ID: 25404012 [TBL] [Abstract][Full Text] [Related]
7. A Tip-Based Workflow for Sensitive IMAC-Based Low Nanogram Level Phosphoproteomics. Tsai CF; Hsu CC; Wang YT; Kim H; Liu T Methods Mol Biol; 2024; 2823():129-140. PubMed ID: 39052218 [TBL] [Abstract][Full Text] [Related]
8. RUPE-phospho: Rapid Ultrasound-Assisted Peptide-Identification-Enhanced Phosphoproteomics Workflow for Microscale Samples. Huang Y; Shao X; Liu Y; Yan K; Ying W; He F; Wang D Anal Chem; 2023 Dec; 95(49):17974-17980. PubMed ID: 38011496 [TBL] [Abstract][Full Text] [Related]
9. Rapid Shotgun Phosphoproteomics Analysis. Carrera M; Cañas B; Lopez-Ferrer D Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721 [TBL] [Abstract][Full Text] [Related]
10. Sample Preparation and Phosphopeptide Enrichment for Plant Phosphoproteomics via Label-Free Mass Spectrometry. Marzban G; Sulaj E Methods Mol Biol; 2024; 2787():293-303. PubMed ID: 38656498 [TBL] [Abstract][Full Text] [Related]
11. A streamlined tandem tip-based workflow for sensitive nanoscale phosphoproteomics. Tsai CF; Wang YT; Hsu CC; Kitata RB; Chu RK; Velickovic M; Zhao R; Williams SM; Chrisler WB; Jorgensen ML; Moore RJ; Zhu Y; Rodland KD; Smith RD; Wasserfall CH; Shi T; Liu T Commun Biol; 2023 Jan; 6(1):70. PubMed ID: 36653408 [TBL] [Abstract][Full Text] [Related]
12. A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis. Urban J Anal Chim Acta; 2022 Mar; 1199():338857. PubMed ID: 35227377 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of four phosphopeptide enrichment strategies for mass spectrometry-based proteomic analysis. Ino Y; Kinoshita E; Kinoshita-Kikuta E; Akiyama T; Nakai Y; Nishino K; Osada M; Ryo A; Hirano H; Koike T; Kimura Y Proteomics; 2022 Apr; 22(7):e2100216. PubMed ID: 34932266 [TBL] [Abstract][Full Text] [Related]
14. Universal Sample Preparation Workflow for Plant Phosphoproteomic Profiling. Hsu CC; Arrington JV; Tao WA Methods Mol Biol; 2021; 2358():93-103. PubMed ID: 34270048 [TBL] [Abstract][Full Text] [Related]
15. A Rapid and Universal Workflow for Label-Free-Quantitation-Based Proteomic and Phosphoproteomic Studies in Cereals. He M; Wang J; Herold S; Xi L; Schulze WX Curr Protoc; 2022 Jun; 2(6):e425. PubMed ID: 35674286 [TBL] [Abstract][Full Text] [Related]
16. Tyrosine phosphoproteomics identifies both codrivers and cotargeting strategies for T790M-related EGFR-TKI resistance in non-small cell lung cancer. Yoshida T; Zhang G; Smith MA; Lopez AS; Bai Y; Li J; Fang B; Koomen J; Rawal B; Fisher KJ; Chen YA; Kitano M; Morita Y; Yamaguchi H; Shibata K; Okabe T; Okamoto I; Nakagawa K; Haura EB Clin Cancer Res; 2014 Aug; 20(15):4059-4074. PubMed ID: 24919575 [TBL] [Abstract][Full Text] [Related]
17. DeepPhospho accelerates DIA phosphoproteome profiling through in silico library generation. Lou R; Liu W; Li R; Li S; He X; Shui W Nat Commun; 2021 Nov; 12(1):6685. PubMed ID: 34795227 [TBL] [Abstract][Full Text] [Related]
18. [Deciphering cellular processes responding to lethality of 17 Li Y; Liu X; Wang Y; Liu Z; Ye M; Wang H Se Pu; 2024 Apr; 42(4):333-344. PubMed ID: 38566422 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of DDA Library-Free Strategies for Phosphoproteomics and Ubiquitinomics Data-Independent Acquisition Data. Wen C; Wu X; Lin G; Yan W; Gan G; Xu X; Chen XY; Chen X; Liu X; Fu G; Zhong CQ J Proteome Res; 2023 Jul; 22(7):2232-2245. PubMed ID: 37256709 [TBL] [Abstract][Full Text] [Related]
20. Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection. Labots M; van der Mijn JC; Beekhof R; Piersma SR; de Goeij-de Haas RR; Pham TV; Knol JC; Dekker H; van Grieken NCT; Verheul HMW; Jiménez CR J Proteomics; 2017 Jun; 162():99-107. PubMed ID: 28442448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]