These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39038278)
21. Assessment of hydrogels for bioprinting of endothelial cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2018 Apr; 106(4):935-947. PubMed ID: 29119674 [TBL] [Abstract][Full Text] [Related]
22. Functionalization of Alginate Hydrogels with a Multifunctional Peptide Supports Mesenchymal Stem Cell Adhesion and Reduces Bacterial Colonization. Oliver-Cervelló L; López-Gómez P; Martin-Gómez H; Marion M; Ginebra MP; Mas-Moruno C Chemistry; 2024 Aug; 30(47):e202400855. PubMed ID: 39031737 [TBL] [Abstract][Full Text] [Related]
23. Multicomponent hydrogels for the formation of vascularized bone-like constructs in vitro. Derkus B; Okesola BO; Barrett DW; D'Este M; Chowdhury TT; Eglin D; Mata A Acta Biomater; 2020 Jun; 109():82-94. PubMed ID: 32311533 [TBL] [Abstract][Full Text] [Related]
24. Delivery of Endothelial Cell-Laden Microgel Elicits Angiogenesis in Self-Assembling Ultrashort Peptide Hydrogels In Vitro. Ramirez-Calderon G; Susapto HH; Hauser CAE ACS Appl Mater Interfaces; 2021 Jun; 13(25):29281-29292. PubMed ID: 34142544 [TBL] [Abstract][Full Text] [Related]
25. Pre-culture of mesenchymal stem cells within RGD-modified hyaluronic acid hydrogel improves their resilience to ischaemic conditions. Gallagher LB; Dolan EB; O'Sullivan J; Levey R; Cavanagh BL; Kovarova L; Pravda M; Velebny V; Farrell T; O'Brien FJ; Duffy GP Acta Biomater; 2020 Apr; 107():78-90. PubMed ID: 32145393 [TBL] [Abstract][Full Text] [Related]
26. Dual independent delivery of pro-angiogenic growth factors from starPEG-heparin hydrogels. Zieris A; Chwalek K; Prokoph S; Levental KR; Welzel PB; Freudenberg U; Werner C J Control Release; 2011 Nov; 156(1):28-36. PubMed ID: 21763368 [TBL] [Abstract][Full Text] [Related]
27. Engineering 3D cell instructive microenvironments by rational assembly of artificial extracellular matrices and cell patterning. Sala A; Hänseler P; Ranga A; Lutolf MP; Vörös J; Ehrbar M; Weber FE Integr Biol (Camb); 2011 Nov; 3(11):1102-11. PubMed ID: 21986771 [TBL] [Abstract][Full Text] [Related]
28. Strategy for constructing vascularized adipose units in poly(l-glutamic acid) hydrogel porous scaffold through inducing in-situ formation of ASCs spheroids. Zhang K; Song L; Wang J; Yan S; Li G; Cui L; Yin J Acta Biomater; 2017 Mar; 51():246-257. PubMed ID: 28093366 [TBL] [Abstract][Full Text] [Related]
29. Improved vascularization of porous scaffolds through growth factor delivery from heparinized polyethylene glycol hydrogels. Janse van Rensburg A; Davies NH; Oosthuysen A; Chokoza C; Zilla P; Bezuidenhout D Acta Biomater; 2017 Feb; 49():89-100. PubMed ID: 27865963 [TBL] [Abstract][Full Text] [Related]
30. Integrated effects of matrix mechanics and vascular endothelial growth factor (VEGF) on capillary sprouting. Wu Y; Al-Ameen MA; Ghosh G Ann Biomed Eng; 2014 May; 42(5):1024-36. PubMed ID: 24558074 [TBL] [Abstract][Full Text] [Related]
31. Peptide and peptide-carbon nanotube hydrogels as scaffolds for tissue & 3D tumor engineering. Sheikholeslam M; Wheeler SD; Duke KG; Marsden M; Pritzker M; Chen P Acta Biomater; 2018 Mar; 69():107-119. PubMed ID: 29248638 [TBL] [Abstract][Full Text] [Related]
32. Controlled proteolytic cleavage site presentation in biomimetic PEGDA hydrogels enhances neovascularization in vitro. Sokic S; Papavasiliou G Tissue Eng Part A; 2012 Dec; 18(23-24):2477-86. PubMed ID: 22725267 [TBL] [Abstract][Full Text] [Related]
33. Tethering QK peptide to enhance angiogenesis in elastin-like recombinamer (ELR) hydrogels. Flora T; de Torre IG; Alonso M; Rodríguez-Cabello JC J Mater Sci Mater Med; 2019 Feb; 30(2):30. PubMed ID: 30762134 [TBL] [Abstract][Full Text] [Related]
34. Cell-Laden Gradient Hydrogel Scaffolds for Neovascularization of Engineered Tissues. He YJ; Santana MF; Staneviciute A; Pimentel MB; Yang F; Goes J; Kawaji K; Vaicik MK; Abdulhadi R; Hibino N; Papavasiliou G Adv Healthc Mater; 2021 Apr; 10(7):e2001706. PubMed ID: 33511790 [TBL] [Abstract][Full Text] [Related]
35. An injectable scaffold based on temperature-responsive hydrogel and factor-loaded nanoparticles for application in vascularization in tissue engineering. He D; Zhao AS; Su H; Zhang Y; Wang YN; Luo D; Gao Y; Li JA; Yang P J Biomed Mater Res A; 2019 Oct; 107(10):2123-2134. PubMed ID: 31094049 [TBL] [Abstract][Full Text] [Related]
36. Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics. Jiang T; Munguia-Lopez JG; Gu K; Bavoux MM; Flores-Torres S; Kort-Mascort J; Grant J; Vijayakumar S; De Leon-Rodriguez A; Ehrlicher AJ; Kinsella JM Biofabrication; 2019 Dec; 12(1):015024. PubMed ID: 31404917 [TBL] [Abstract][Full Text] [Related]
37. Engineering dextran-based scaffolds for drug delivery and tissue repair. Sun G; Mao JJ Nanomedicine (Lond); 2012 Nov; 7(11):1771-84. PubMed ID: 23210716 [TBL] [Abstract][Full Text] [Related]
38. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies. Xu M; Zhai D; Chang J; Wu C Acta Biomater; 2014 Jan; 10(1):463-76. PubMed ID: 24071000 [TBL] [Abstract][Full Text] [Related]
39. Hydrogels to Recapture Extracellular Matrix Cues That Regulate Vascularization. Song J; Gerecht S Arterioscler Thromb Vasc Biol; 2023 Aug; 43(8):e291-e302. PubMed ID: 37317849 [TBL] [Abstract][Full Text] [Related]
40. RGD-modified dextran hydrogel promotes follicle growth in three-dimensional ovarian tissue culture in mice. Matsushige C; Xu X; Miyagi M; Zuo YY; Yamazaki Y Theriogenology; 2022 Apr; 183():120-131. PubMed ID: 35247849 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]