These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 39038661)
21. Engineering host cell lines to reduce terminal sialylation of secreted antibodies. Naso MF; Tam SH; Scallon BJ; Raju TS MAbs; 2010; 2(5):519-27. PubMed ID: 20716959 [TBL] [Abstract][Full Text] [Related]
22. Characterization of intact glycopeptides reveals the impact of culture media on site-specific glycosylation of EPO-Fc fusion protein generated by CHO-GS cells. Wang Q; Yang G; Wang T; Yang W; Betenbaugh MJ; Zhang H Biotechnol Bioeng; 2019 Sep; 116(9):2303-2315. PubMed ID: 31062865 [TBL] [Abstract][Full Text] [Related]
23. Understanding the intracellular effects of yeast extract on the enhancement of Fc-fusion protein production in Chinese hamster ovary cell culture. Hu D; Sun Y; Liu X; Liu J; Zhang X; Zhao L; Wang H; Tan WS; Fan L Appl Microbiol Biotechnol; 2015 Oct; 99(20):8429-40. PubMed ID: 26162671 [TBL] [Abstract][Full Text] [Related]
24. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions. Wang Q; Wang T; Zhang R; Yang S; McFarland KS; Chung CY; Jia H; Wang LX; Cipollo JF; Betenbaugh MJ Biotechnol Bioeng; 2022 Jan; 119(1):102-117. PubMed ID: 34647616 [TBL] [Abstract][Full Text] [Related]
25. Understanding of altered N-glycosylation-related gene expression in recombinant Chinese hamster ovary cells subjected to elevated ammonium concentration by digital mRNA counting. Ha TK; Kim YG; Lee GM Biotechnol Bioeng; 2015 Aug; 112(8):1583-93. PubMed ID: 25728222 [TBL] [Abstract][Full Text] [Related]
26. Inhibition of poly-LacNAc biosynthesis with release of CMP-Neu5Ac feedback inhibition increases the sialylation of recombinant EPO produced in CHO cells. Lee CG; Oh MJ; Park SY; An HJ; Kim JH Sci Rep; 2018 May; 8(1):7273. PubMed ID: 29740059 [TBL] [Abstract][Full Text] [Related]
27. Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression. Lin N; Mascarenhas J; Sealover NR; George HJ; Brooks J; Kayser KJ; Gau B; Yasa I; Azadi P; Archer-Hartmann S Biotechnol Prog; 2015; 31(2):334-46. PubMed ID: 25641927 [TBL] [Abstract][Full Text] [Related]
28. Enhanced sialylation of recombinant erythropoietin in CHO cells by human glycosyltransferase expression. Jeong YT; Choi O; Lim HR; Son YD; Kim HJ; Kim JH J Microbiol Biotechnol; 2008 Dec; 18(12):1945-52. PubMed ID: 19131698 [TBL] [Abstract][Full Text] [Related]
29. Microbial production of sialic acid and sialylated human milk oligosaccharides: Advances and perspectives. Zhang X; Liu Y; Liu L; Li J; Du G; Chen J Biotechnol Adv; 2019; 37(5):787-800. PubMed ID: 31028787 [TBL] [Abstract][Full Text] [Related]
30. Understanding and Controlling Sialylation in a CHO Fc-Fusion Process. Lewis AM; Croughan WD; Aranibar N; Lee AG; Warrack B; Abu-Absi NR; Patel R; Drew B; Borys MC; Reily MD; Li ZJ PLoS One; 2016; 11(6):e0157111. PubMed ID: 27310468 [TBL] [Abstract][Full Text] [Related]
31. Sialylation enhancement of CTLA4-Ig fusion protein in Chinese hamster ovary cells by dexamethasone. Jing Y; Qian Y; Li ZJ Biotechnol Bioeng; 2010 Oct; 107(3):488-96. PubMed ID: 20521303 [TBL] [Abstract][Full Text] [Related]
32. Effect of lithium chloride on the production and sialylation of Fc-fusion protein in Chinese hamster ovary cell culture. Ha TK; Kim YG; Lee GM Appl Microbiol Biotechnol; 2014 Nov; 98(22):9239-48. PubMed ID: 25132065 [TBL] [Abstract][Full Text] [Related]
33. Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Weikert S; Papac D; Briggs J; Cowfer D; Tom S; Gawlitzek M; Lofgren J; Mehta S; Chisholm V; Modi N; Eppler S; Carroll K; Chamow S; Peers D; Berman P; Krummen L Nat Biotechnol; 1999 Nov; 17(11):1116-21. PubMed ID: 10545921 [TBL] [Abstract][Full Text] [Related]
34. Enhancement of recombinant human EPO production and sialylation in chinese hamster ovary cells through Bombyx mori 30Kc19 gene expression. Wang Z; Park JH; Park HH; Tan W; Park TH Biotechnol Bioeng; 2011 Jul; 108(7):1634-42. PubMed ID: 21337325 [TBL] [Abstract][Full Text] [Related]
35. Glycoengineering of CHO Cells to Improve Product Quality. Wang Q; Yin B; Chung CY; Betenbaugh MJ Methods Mol Biol; 2017; 1603():25-44. PubMed ID: 28493121 [TBL] [Abstract][Full Text] [Related]
36. Impact of a human CMP-sialic acid transporter on recombinant glycoprotein sialylation in glycoengineered insect cells. Mabashi-Asazuma H; Shi X; Geisler C; Kuo CW; Khoo KH; Jarvis DL Glycobiology; 2013 Feb; 23(2):199-210. PubMed ID: 23065352 [TBL] [Abstract][Full Text] [Related]
37. Enhanced sialylation of a human chimeric IgG1 variant produced in human and rodent cell lines. Mimura Y; Kelly RM; Unwin L; Albrecht S; Jefferis R; Goodall M; Mizukami Y; Mimura-Kimura Y; Matsumoto T; Ueoka H; Rudd PM J Immunol Methods; 2016 Jan; 428():30-6. PubMed ID: 26627984 [TBL] [Abstract][Full Text] [Related]
38. Chemical inhibition of autophagy: Examining its potential to increase the specific productivity of recombinant CHO cell lines. Baek E; Kim CL; Kim MG; Lee JS; Lee GM Biotechnol Bioeng; 2016 Sep; 113(9):1953-61. PubMed ID: 26914152 [TBL] [Abstract][Full Text] [Related]
39. Impact of Fc N-glycan sialylation on IgG structure. Zhang Z; Shah B; Richardson J MAbs; 2019; 11(8):1381-1390. PubMed ID: 31411531 [TBL] [Abstract][Full Text] [Related]
40. Increasing the sialylation of therapeutic glycoproteins: the potential of the sialic acid biosynthetic pathway. Bork K; Horstkorte R; Weidemann W J Pharm Sci; 2009 Oct; 98(10):3499-508. PubMed ID: 19199295 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]