These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 39038688)

  • 1. Modelling solar photovoltaic systems on dairy farms for cost savings and GHG emission reduction.
    Dean J; Vogel E; Murphy F
    Sci Total Environ; 2024 Oct; 948():174874. PubMed ID: 39038688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relating the carbon footprint of milk from Irish dairy farms to economic performance.
    O'Brien D; Hennessy T; Moran B; Shalloo L
    J Dairy Sci; 2015 Oct; 98(10):7394-407. PubMed ID: 26254524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding variability in carbon footprint of smallholder dairy farms in the central highlands of Ethiopia.
    Feyissa AA; Senbeta F; Diriba D; Tolera A
    Trop Anim Health Prod; 2022 Dec; 54(6):411. PubMed ID: 36456660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The carbon footprint of integrated milk production and renewable energy systems - A case study.
    Vida E; Tedesco DEA
    Sci Total Environ; 2017 Dec; 609():1286-1294. PubMed ID: 28793397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy demand on dairy farms in Ireland.
    Upton J; Humphreys J; Groot Koerkamp PW; French P; Dillon P; De Boer IJ
    J Dairy Sci; 2013 Oct; 96(10):6489-98. PubMed ID: 23910548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the interactions between C and N farm balances and GHG emissions from confinement dairy farms in northern Spain.
    Del Prado A; Mas K; Pardo G; Gallejones P
    Sci Total Environ; 2013 Nov; 465():156-65. PubMed ID: 23601287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms.
    O'Brien D; Capper JL; Garnsworthy PC; Grainger C; Shalloo L
    J Dairy Sci; 2014 Mar; 97(3):1835-51. PubMed ID: 24440256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The environmental and economic analysis of grid-connected photovoltaic power systems with silicon solar panels, in accord with the new energy policy in Iran.
    Farangi M; Asl Soleimani E; Zahedifar M; Amiri O; Poursafar J
    Energy (Oxf); 2020 Jul; 202():117771. PubMed ID: 32367905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of carbon footprint of milk production and identification of its major determinants in smallholder dairy farms in Karnataka, India.
    Mech A; Devi GL; Sivaram M; Sirohi S; Dhali A; Kolte AP; Malik PK; Veeranna RK; Niketha L; Bhatta R
    J Dairy Sci; 2023 Dec; 106(12):8847-8860. PubMed ID: 37641313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Levelized cost estimates of solar photovoltaic electricity in the United Kingdom until 2035.
    Mandys F; Chitnis M; Silva SRP
    Patterns (N Y); 2023 May; 4(5):100735. PubMed ID: 37223275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investment appraisal of technology innovations on dairy farm electricity consumption.
    Upton J; Murphy M; De Boer IJ; Groot Koerkamp PW; Berentsen PB; Shalloo L
    J Dairy Sci; 2015 Feb; 98(2):898-909. PubMed ID: 25497808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of ecosystem services into the carbon footprint of milk of South German dairy farms.
    Robert Kiefer L; Menzel F; Bahrs E
    J Environ Manage; 2015 Apr; 152():11-8. PubMed ID: 25602922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon footprint of dairy goat milk production in New Zealand.
    Robertson K; Symes W; Garnham M
    J Dairy Sci; 2015 Jul; 98(7):4279-93. PubMed ID: 25981064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley.
    Battini F; Agostini A; Boulamanti AK; Giuntoli J; Amaducci S
    Sci Total Environ; 2014 May; 481():196-208. PubMed ID: 24598150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electricity consumption of anesthesia workstations and potential emission savings by avoiding standby.
    Drinhaus H; Drinhaus J; Schumacher C; Schramm MJ; Wetsch WA
    Anaesthesiologie; 2024 Apr; 73(4):244-250. PubMed ID: 38349537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Techno-economic and life cycle assessment of agrivoltaic system (AVS) designs.
    Ravilla A; Shirkey G; Chen J; Jarchow M; Stary O; Celik I
    Sci Total Environ; 2024 Feb; 912():169274. PubMed ID: 38092209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental performances of Sardinian dairy sheep production systems at different input levels.
    Vagnoni E; Franca A; Breedveld L; Porqueddu C; Ferrara R; Duce P
    Sci Total Environ; 2015 Jan; 502():354-61. PubMed ID: 25265396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intertemporal cumulative radiative forcing effects of photovoltaic deployments.
    Ravikumar D; Seager TP; Chester MV; Fraser MP
    Environ Sci Technol; 2014 Sep; 48(17):10010-8. PubMed ID: 25127004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The water consumption reductions from home solar installation in the United States.
    Vengosh A; Weinthal E
    Sci Total Environ; 2023 Jan; 854():158738. PubMed ID: 36108854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LIFE BEEF CARBON: a common framework for quantifying grass and corn based beef farms' carbon footprints.
    O'Brien D; Herron J; Andurand J; Caré S; Martinez P; Migliorati L; Moro M; Pirlo G; Dollé JB
    Animal; 2020 Apr; 14(4):834-845. PubMed ID: 31666147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.