These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 39038730)
21. First Things First: Vital Protein Marks by N-Terminal Acetyltransferases. Aksnes H; Drazic A; Marie M; Arnesen T Trends Biochem Sci; 2016 Sep; 41(9):746-760. PubMed ID: 27498224 [TBL] [Abstract][Full Text] [Related]
22. Peptide CoA conjugates for in situ proteomics profiling of acetyltransferase activities. Eirich J; Sindlinger J; Schön S; Schwarzer D; Finkemeier I Methods Enzymol; 2023; 684():209-252. PubMed ID: 37230590 [TBL] [Abstract][Full Text] [Related]
23. Spotlight on protein N-terminal acetylation. Ree R; Varland S; Arnesen T Exp Mol Med; 2018 Jul; 50(7):1-13. PubMed ID: 30054468 [TBL] [Abstract][Full Text] [Related]
24. In Vitro N-Terminal Acetylation of Bacterially Expressed Parvalbumins by N-Terminal Acetyltransferases from Escherichia coli. Lapteva YS; Vologzhannikova AA; Sokolov AS; Ismailov RG; Uversky VN; Permyakov SE Appl Biochem Biotechnol; 2021 May; 193(5):1365-1378. PubMed ID: 32394317 [TBL] [Abstract][Full Text] [Related]
25. Functional Insights Into Protein Acetylation in the Hyperthermophilic Archaeon Cao J; Wang T; Wang Q; Zheng X; Huang L Mol Cell Proteomics; 2019 Aug; 18(8):1572-1587. PubMed ID: 31182439 [TBL] [Abstract][Full Text] [Related]
26. Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation. Liszczak G; Arnesen T; Marmorstein R J Biol Chem; 2011 Oct; 286(42):37002-10. PubMed ID: 21900231 [TBL] [Abstract][Full Text] [Related]
27. Modulation of the bacterial CobB sirtuin deacylase activity by N-terminal acetylation. Parks AR; Escalante-Semerena JC Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15895-15901. PubMed ID: 32571932 [TBL] [Abstract][Full Text] [Related]
28. N-acetyltransferase and inflammation: Bridging an unexplored niche. Raghul Kannan S; Tamizhselvi R Gene; 2023 Dec; 887():147730. PubMed ID: 37625560 [TBL] [Abstract][Full Text] [Related]
29. The N-terminal Acetyltransferase Naa10/ARD1 Does Not Acetylate Lysine Residues. Magin RS; March ZM; Marmorstein R J Biol Chem; 2016 Mar; 291(10):5270-7. PubMed ID: 26755727 [TBL] [Abstract][Full Text] [Related]
30. Biochemical evidence for relaxed substrate specificity of Nα-acetyltransferase (Rv3420c/rimI) of Mycobacterium tuberculosis. Pathak D; Bhat AH; Sapehia V; Rai J; Rao A Sci Rep; 2016 Jun; 6():28892. PubMed ID: 27353550 [TBL] [Abstract][Full Text] [Related]
31. The mechanism of N-terminal acetylation of proteins. Driessen HP; de Jong WW; Tesser GI; Bloemendal H CRC Crit Rev Biochem; 1985; 18(4):281-325. PubMed ID: 3902358 [TBL] [Abstract][Full Text] [Related]
32. Identification of methionine Nalpha-acetyltransferase from Saccharomyces cerevisiae. Lee FJ; Lin LW; Smith JA J Biol Chem; 1990 Mar; 265(7):3603-6. PubMed ID: 2406257 [TBL] [Abstract][Full Text] [Related]
33. An organellar nα-acetyltransferase, naa60, acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity. Aksnes H; Van Damme P; Goris M; Starheim KK; Marie M; Støve SI; Hoel C; Kalvik TV; Hole K; Glomnes N; Furnes C; Ljostveit S; Ziegler M; Niere M; Gevaert K; Arnesen T Cell Rep; 2015 Mar; 10(8):1362-74. PubMed ID: 25732826 [TBL] [Abstract][Full Text] [Related]
34. Probing the interaction between NatA and the ribosome for co-translational protein acetylation. Magin RS; Deng S; Zhang H; Cooperman B; Marmorstein R PLoS One; 2017; 12(10):e0186278. PubMed ID: 29016658 [TBL] [Abstract][Full Text] [Related]
35. Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation. Helsens K; Van Damme P; Degroeve S; Martens L; Arnesen T; Vandekerckhove J; Gevaert K J Proteome Res; 2011 Aug; 10(8):3578-89. PubMed ID: 21619078 [TBL] [Abstract][Full Text] [Related]
36. Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity. Evjenth R; Hole K; Karlsen OA; Ziegler M; Arnesen T; Lillehaug JR J Biol Chem; 2009 Nov; 284(45):31122-9. PubMed ID: 19744929 [TBL] [Abstract][Full Text] [Related]
37. Properties of Nat4, an N(alpha)-acetyltransferase of Saccharomyces cerevisiae that modifies N termini of histones H2A and H4. Polevoda B; Hoskins J; Sherman F Mol Cell Biol; 2009 Jun; 29(11):2913-24. PubMed ID: 19332560 [TBL] [Abstract][Full Text] [Related]
38. Predicting N-terminal acetylation based on feature selection method. Cai YD; Lu L Biochem Biophys Res Commun; 2008 Aug; 372(4):862-5. PubMed ID: 18533108 [TBL] [Abstract][Full Text] [Related]
39. A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant. Van Damme P; Støve SI; Glomnes N; Gevaert K; Arnesen T Mol Cell Proteomics; 2014 Aug; 13(8):2031-41. PubMed ID: 24408909 [TBL] [Abstract][Full Text] [Related]
40. N-Terminal Acetylation by NatB Is Required for the Shutoff Activity of Influenza A Virus PA-X. Oishi K; Yamayoshi S; Kozuka-Hata H; Oyama M; Kawaoka Y Cell Rep; 2018 Jul; 24(4):851-860. PubMed ID: 30044982 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]