These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 39039191)

  • 21. Invest 5% of research funds in ensuring data are reusable.
    Mons B
    Nature; 2020 Feb; 578(7796):491. PubMed ID: 32099131
    [No Abstract]   [Full Text] [Related]  

  • 22. The rise of deep learning in drug discovery.
    Chen H; Engkvist O; Wang Y; Olivecrona M; Blaschke T
    Drug Discov Today; 2018 Jun; 23(6):1241-1250. PubMed ID: 29366762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Big Data Analysis and Machine Learning in Intensive Care Units.
    Núñez Reiz A; Armengol de la Hoz MA; Sánchez García M
    Med Intensiva (Engl Ed); 2019 Oct; 43(7):416-426. PubMed ID: 30591356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. China's ChatGPT: why China is building its own AI chatbots.
    Biever C
    Nature; 2024 May; 629(8014):977-978. PubMed ID: 38778195
    [No Abstract]   [Full Text] [Related]  

  • 25. Using ChatGPT to Generate Research Ideas in Dysphagia: A Pilot Study.
    Nachalon Y; Broer M; Nativ-Zeltzer N
    Dysphagia; 2024 Jun; 39(3):407-411. PubMed ID: 37907728
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generative AI makes for better scientific writing - but beware the pitfalls.
    Liao Z; Zhang C
    Nature; 2024 Jul; 631(8021):505. PubMed ID: 39014036
    [No Abstract]   [Full Text] [Related]  

  • 27. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach.
    Weng WH; Wagholikar KB; McCray AT; Szolovits P; Chueh HC
    BMC Med Inform Decis Mak; 2017 Dec; 17(1):155. PubMed ID: 29191207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Text summarization with ChatGPT for drug labeling documents.
    Ying L; Liu Z; Fang H; Kusko R; Wu L; Harris S; Tong W
    Drug Discov Today; 2024 Jun; 29(6):104018. PubMed ID: 38723763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comment on: "Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts".
    Magge A; Sarker A; Nikfarjam A; Gonzalez-Hernandez G
    J Am Med Inform Assoc; 2019 Jun; 26(6):577-579. PubMed ID: 31087070
    [No Abstract]   [Full Text] [Related]  

  • 30. Natural Language Search Interfaces: Health Data Needs Single-Field Variable Search.
    Jay C; Harper S; Dunlop I; Smith S; Sufi S; Goble C; Buchan I
    J Med Internet Res; 2016 Jan; 18(1):e13. PubMed ID: 26769334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of Large Language Model Performance and Reliability for Citations and References in Scholarly Writing: Cross-Disciplinary Study.
    Mugaanyi J; Cai L; Cheng S; Lu C; Huang J
    J Med Internet Res; 2024 Apr; 26():e52935. PubMed ID: 38578685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing the performance of ChatGPT's responses to questions related to epilepsy: A cross-sectional study on natural language processing and medical information retrieval.
    Kim HW; Shin DH; Kim J; Lee GH; Cho JW
    Seizure; 2024 Jan; 114():1-8. PubMed ID: 38007922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sentimental Analysis of Twitter Users from Turkish Content with Natural Language Processing.
    Balli C; Guzel MS; Bostanci E; Mishra A
    Comput Intell Neurosci; 2022; 2022():2455160. PubMed ID: 35432519
    [TBL] [Abstract][Full Text] [Related]  

  • 34. What do psychiatry researchers feel about ChatGPT? A study based on Natural Language Processing techniques.
    Praveen SV; Lohia R
    Asian J Psychiatr; 2023 Jul; 85():103626. PubMed ID: 37229911
    [No Abstract]   [Full Text] [Related]  

  • 35. ChatGPT and the rise of large language models: the new AI-driven infodemic threat in public health.
    De Angelis L; Baglivo F; Arzilli G; Privitera GP; Ferragina P; Tozzi AE; Rizzo C
    Front Public Health; 2023; 11():1166120. PubMed ID: 37181697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ChatGPT in the Material Design: Selected Case Studies to Assess the Potential of ChatGPT.
    Deb J; Saikia L; Dihingia KD; Sastry GN
    J Chem Inf Model; 2024 Feb; 64(3):799-811. PubMed ID: 38237025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards automated generation of curated datasets in radiology: Application of natural language processing to unstructured reports exemplified on CT for pulmonary embolism.
    Weikert T; Nesic I; Cyriac J; Bremerich J; Sauter AW; Sommer G; Stieltjes B
    Eur J Radiol; 2020 Apr; 125():108862. PubMed ID: 32135443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Applications of deep learning for the analysis of medical data.
    Jang HJ; Cho KO
    Arch Pharm Res; 2019 Jun; 42(6):492-504. PubMed ID: 31140082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Constructing synthetic datasets with generative artificial intelligence to train large language models to classify acute renal failure from clinical notes.
    Litake O; Park BH; Tully JL; Gabriel RA
    J Am Med Inform Assoc; 2024 May; 31(6):1404-1410. PubMed ID: 38622901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Natural language processing to measure the frequency and mode of communication between healthcare professionals and family members of critically ill patients.
    Lucini FR; Krewulak KD; Fiest KM; Bagshaw SM; Zuege DJ; Lee J; Stelfox HT
    J Am Med Inform Assoc; 2021 Mar; 28(3):541-548. PubMed ID: 33201981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.