These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 39039203)

  • 1. Gene drives: an alternative approach to malaria control?
    Naidoo K; Oliver SV
    Gene Ther; 2024 Jul; ():. PubMed ID: 39039203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of malaria-transmitting mosquitoes using gene drives.
    Nolan T
    Philos Trans R Soc Lond B Biol Sci; 2021 Feb; 376(1818):20190803. PubMed ID: 33357060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility.
    North AR; Burt A; Godfray HCJ
    BMC Biol; 2020 Aug; 18(1):98. PubMed ID: 32782000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Effector and Gene-Drive Developments to Engineer Arbovirus-Resistant Aedes aegypti (Diptera: Culicidae) for a Sustainable Population Replacement Strategy in the Field.
    Reid WR; Olson KE; Franz AWE
    J Med Entomol; 2021 Sep; 58(5):1987-1996. PubMed ID: 33704462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antiviral Effectors and Gene Drive Strategies for Mosquito Population Suppression or Replacement to Mitigate Arbovirus Transmission by
    Williams AE; Franz AWE; Reid WR; Olson KE
    Insects; 2020 Jan; 11(1):. PubMed ID: 31940960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Winning the Tug-of-War Between Effector Gene Design and Pathogen Evolution in Vector Population Replacement Strategies.
    Marshall JM; Raban RR; Kandul NP; Edula JR; León TM; Akbari OS
    Front Genet; 2019; 10():1072. PubMed ID: 31737050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Driving down malaria transmission with engineered gene drives.
    Garrood WT; Cuber P; Willis K; Bernardini F; Page NM; Haghighat-Khah RE
    Front Genet; 2022; 13():891218. PubMed ID: 36338968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of off-target effects in CRISPR-based gene drives in the human malaria mosquito.
    Garrood WT; Kranjc N; Petri K; Kim DY; Guo JA; Hammond AM; Morianou I; Pattanayak V; Joung JK; Crisanti A; Simoni A
    Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34050017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current status of genome editing in vector mosquitoes: A review.
    Reegan AD; Ceasar SA; Paulraj MG; Ignacimuthu S; Al-Dhabi NA
    Biosci Trends; 2017 Jan; 10(6):424-432. PubMed ID: 27990003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress towards engineering gene drives for population control.
    Raban RR; Marshall JM; Akbari OS
    J Exp Biol; 2020 Feb; 223(Pt Suppl 1):. PubMed ID: 32034041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.
    Gantz VM; Jasinskiene N; Tatarenkova O; Fazekas A; Macias VM; Bier E; James AA
    Proc Natl Acad Sci U S A; 2015 Dec; 112(49):E6736-43. PubMed ID: 26598698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two step male release strategy using transgenic mosquito lines to control transmission of vector-borne diseases.
    Carvalho DO; Costa-da-Silva AL; Lees RS; Capurro ML
    Acta Trop; 2014 Apr; 132 Suppl():S170-7. PubMed ID: 24513036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement.
    Hoermann A; Tapanelli S; Capriotti P; Del Corsano G; Masters EK; Habtewold T; Christophides GK; Windbichler N
    Elife; 2021 Apr; 10():. PubMed ID: 33845943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do mosquitoes transmit the avian malaria-like parasite Haemoproteus? An experimental test of vector competence using mosquito saliva.
    Gutiérrez-López R; Martínez-de la Puente J; Gangoso L; Yan J; Soriguer RC; Figuerola J
    Parasit Vectors; 2016 Nov; 9(1):609. PubMed ID: 27894354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paratransgenesis: a promising new strategy for mosquito vector control.
    Wilke AB; Marrelli MT
    Parasit Vectors; 2015 Jun; 8():342. PubMed ID: 26104575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metanetwork Transmission Model for Predicting a Malaria-Control Strategy.
    Li B; Liu X; Wang WJ; Zhao F; An ZY; Zhao H
    Front Genet; 2018; 9():446. PubMed ID: 30386373
    [No Abstract]   [Full Text] [Related]  

  • 17. Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi.
    Adolfi A; Gantz VM; Jasinskiene N; Lee HF; Hwang K; Terradas G; Bulger EA; Ramaiah A; Bennett JB; Emerson JJ; Marshall JM; Bier E; James AA
    Nat Commun; 2020 Nov; 11(1):5553. PubMed ID: 33144570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perspectives of people in Mali toward genetically-modified mosquitoes for malaria control.
    Marshall JM; Touré MB; Traore MM; Famenini S; Taylor CE
    Malar J; 2010 May; 9():128. PubMed ID: 20470410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. INFRAVEC: research capacity for the implementation of genetic control of mosquitoes.
    Crisanti A
    Pathog Glob Health; 2013 Dec; 107(8):458-62. PubMed ID: 24428829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflections on the Anopheles gambiae genome sequence, transgenic mosquitoes and the prospect for controlling malaria and other vector borne diseases.
    Tabachnick WJ
    J Med Entomol; 2003 Sep; 40(5):597-606. PubMed ID: 14596272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.