These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 39039511)

  • 1. Differentiation of granulomatous nodules with lobulation and spiculation signs from solid lung adenocarcinomas using a CT deep learning model.
    Wen Y; Wu W; Liufu Y; Pan X; Zhang Y; Qi S; Guan Y
    BMC Cancer; 2024 Jul; 24(1):875. PubMed ID: 39039511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CLSSL-ResNet: Predicting malignancy of solitary pulmonary nodules from CT images by chimeric label with self-supervised learning.
    Zhao T; Qi S; Yue Y; Zhang B; Li J; Wen Y; Yao Y; Qian W; Guan Y
    J Xray Sci Technol; 2023; 31(5):981-999. PubMed ID: 37424490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lung Cancer and Granuloma Identification Using a Deep Learning Model to Extract 3-Dimensional Radiomics Features in CT Imaging.
    Lin X; Jiao H; Pang Z; Chen H; Wu W; Wang X; Xiong L; Chen B; Huang Y; Li S; Li L
    Clin Lung Cancer; 2021 Sep; 22(5):e756-e766. PubMed ID: 33678583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas.
    Feng B; Chen X; Chen Y; Lu S; Liu K; Li K; Liu Z; Hao Y; Li Z; Zhu Z; Yao N; Liang G; Zhang J; Long W; Liu X
    Eur Radiol; 2020 Dec; 30(12):6497-6507. PubMed ID: 32594210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images.
    Gong J; Liu J; Hao W; Nie S; Zheng B; Wang S; Peng W
    Eur Radiol; 2020 Apr; 30(4):1847-1855. PubMed ID: 31811427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CT-based radiomics signature for differentiating solitary granulomatous nodules from solid lung adenocarcinoma.
    Yang X; He J; Wang J; Li W; Liu C; Gao D; Guan Y
    Lung Cancer; 2018 Nov; 125():109-114. PubMed ID: 30429007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated segmentation and shape-based classification scheme for distinguishing adenocarcinomas from granulomas on lung CT.
    Alilou M; Beig N; Orooji M; Rajiah P; Velcheti V; Rakshit S; Reddy N; Yang M; Jacono F; Gilkeson RC; Linden P; Madabhushi A
    Med Phys; 2017 Jul; 44(7):3556-3569. PubMed ID: 28295386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics nomogram for preoperative differentiation of lung tuberculoma from adenocarcinoma in solitary pulmonary solid nodule.
    Feng B; Chen X; Chen Y; Liu K; Li K; Liu X; Yao N; Li Z; Li R; Zhang C; Ji J; Long W
    Eur J Radiol; 2020 Jul; 128():109022. PubMed ID: 32371184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study to evaluate CT-based semantic and radiomic features in preoperative diagnosis of invasive pulmonary adenocarcinomas manifesting as subsolid nodules.
    Wu YJ; Liu YC; Liao CY; Tang EK; Wu FZ
    Sci Rep; 2021 Jan; 11(1):66. PubMed ID: 33462251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CT-Assisted Improvements in the Accuracy of the Intraoperative Frozen Section Examination of Ground-Glass Density Nodules.
    Xinli W; Xiaoshuang S; Chengxin Y; Qiang Z
    Comput Math Methods Med; 2022; 2022():8967643. PubMed ID: 35035526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preoperative CT-based radiomics combined with intraoperative frozen section is predictive of invasive adenocarcinoma in pulmonary nodules: a multicenter study.
    Wu G; Woodruff HC; Sanduleanu S; Refaee T; Jochems A; Leijenaar R; Gietema H; Shen J; Wang R; Xiong J; Bian J; Wu J; Lambin P
    Eur Radiol; 2020 May; 30(5):2680-2691. PubMed ID: 32006165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CT-based radiomics nomogram for prediction of lung adenocarcinomas and granulomatous lesions in patient with solitary sub-centimeter solid nodules.
    Chen X; Feng B; Chen Y; Liu K; Li K; Duan X; Hao Y; Cui E; Liu Z; Zhang C; Long W; Liu X
    Cancer Imaging; 2020 Jul; 20(1):45. PubMed ID: 32641166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of a preoperative CT‑based radiomics nomogram to differentiate tuberculosis granulomas from lung adenocarcinomas: an external validation study.
    Yang L; Jiang Z; Tong J; Li N; Dong Q; Wang K
    BMC Cancer; 2024 Jun; 24(1):670. PubMed ID: 38824514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinguishing granulomas from adenocarcinomas by integrating stable and discriminating radiomic features on non-contrast computed tomography scans.
    Khorrami M; Bera K; Thawani R; Rajiah P; Gupta A; Fu P; Linden P; Pennell N; Jacono F; Gilkeson RC; Velcheti V; Madabhushi A
    Eur J Cancer; 2021 May; 148():146-158. PubMed ID: 33743483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination between transient and persistent subsolid pulmonary nodules on baseline CT using deep transfer learning.
    Huang C; Lv W; Zhou C; Mao L; Xu Q; Li X; Qi L; Xia F; Li X; Zhang Q; Zhang L; Lu G
    Eur Radiol; 2020 Dec; 30(12):6913-6923. PubMed ID: 32696253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CT-based deep learning model to differentiate invasive pulmonary adenocarcinomas appearing as subsolid nodules among surgical candidates: comparison of the diagnostic performance with a size-based logistic model and radiologists.
    Kim H; Lee D; Cho WS; Lee JC; Goo JM; Kim HC; Park CM
    Eur Radiol; 2020 Jun; 30(6):3295-3305. PubMed ID: 32055949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proposing a deep learning-based method for improving the diagnostic certainty of pulmonary nodules in CT scan of chest.
    Wang YW; Wang JW; Yang SX; Qi LL; Lin HL; Zhou Z; Yu YZ
    Eur Radiol; 2021 Nov; 31(11):8160-8167. PubMed ID: 33956178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing a deep learning model for pulmonary nodule malignancy risk estimation in chest CT with uncertainty estimation.
    Peeters D; Alves N; Venkadesh KV; Dinnessen R; Saghir Z; Scholten ET; Schaefer-Prokop C; Vliegenthart R; Prokop M; Jacobs C
    Eur Radiol; 2024 Oct; 34(10):6639-6651. PubMed ID: 38536463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas.
    Beig N; Khorrami M; Alilou M; Prasanna P; Braman N; Orooji M; Rakshit S; Bera K; Rajiah P; Ginsberg J; Donatelli C; Thawani R; Yang M; Jacono F; Tiwari P; Velcheti V; Gilkeson R; Linden P; Madabhushi A
    Radiology; 2019 Mar; 290(3):783-792. PubMed ID: 30561278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a Deep Learning Algorithm for the Detection of Malignant Pulmonary Nodules in Chest Radiographs.
    Yoo H; Kim KH; Singh R; Digumarthy SR; Kalra MK
    JAMA Netw Open; 2020 Sep; 3(9):e2017135. PubMed ID: 32970157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.