These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 39039847)

  • 21. Spatiotemporal variation in vegetation phenology and its response to climate change in marshes of Sanjiang Plain, China.
    Liu Y; Shen X; Zhang J; Wang Y; Wu L; Ma R; Lu X; Jiang M
    Ecol Evol; 2023 Jan; 13(1):e9755. PubMed ID: 36699565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decoding autumn phenology: Unraveling the link between observation methods and detected environmental cues.
    Kloos S; Klosterhalfen A; Knohl A; Menzel A
    Glob Chang Biol; 2024 Mar; 30(3):e17231. PubMed ID: 38481067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trends in land surface phenology across the conterminous United States (1982-2016) analyzed by NEON domains.
    Liang L; Henebry GM; Liu L; Zhang X; Hsu LC
    Ecol Appl; 2021 Jul; 31(5):e02323. PubMed ID: 33655567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Seasonal biological carryover dominates northern vegetation growth.
    Lian X; Piao S; Chen A; Wang K; Li X; Buermann W; Huntingford C; Peñuelas J; Xu H; Myneni RB
    Nat Commun; 2021 Feb; 12(1):983. PubMed ID: 33579949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models.
    Keenan TF; Richardson AD
    Glob Chang Biol; 2015 Jul; 21(7):2634-2641. PubMed ID: 25662890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Soil freeze-thaw cycles affect spring phenology by changing phenological sensitivity in the Northern Hemisphere.
    Li T; Fu B; Lü Y; Du C; Zhao Z; Wang F; Gao G; Wu X
    Sci Total Environ; 2024 Mar; 914():169963. PubMed ID: 38215850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs.
    Primack RB; Laube J; Gallinat AS; Menzel A
    Ann Bot; 2015 Nov; 116(6):889-97. PubMed ID: 25851135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ongoing seasonally uneven climate warming leads to earlier autumn growth cessation in deciduous trees.
    Zohner CM; Renner SS
    Oecologia; 2019 Feb; 189(2):549-561. PubMed ID: 30684009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A global increase in tree cover extends the growing season length as observed from satellite records.
    Fang Z; Brandt M; Wang L; Fensholt R
    Sci Total Environ; 2022 Feb; 806(Pt 3):151205. PubMed ID: 34710418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Earlier leaf senescence dates are constrained by soil moisture.
    Wang X; Wu C; Liu Y; Peñuelas J; Peng J
    Glob Chang Biol; 2023 Mar; 29(6):1557-1573. PubMed ID: 36541065
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of winter precipitation on spring phenology in boreal forests.
    Yun J; Jeong SJ; Ho CH; Park CE; Park H; Kim J
    Glob Chang Biol; 2018 Nov; 24(11):5176-5187. PubMed ID: 30067888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Influence of climate change and human activities on grassland phenology in Anhui Province].
    Gong ZY; Wang CL; Dong DD; Zhang R; Zhang X
    Ying Yong Sheng Tai Xue Bao; 2024 Apr; 35(4):1092-1100. PubMed ID: 38884244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China.
    Liu Q; Fu YH; Zeng Z; Huang M; Li X; Piao S
    Glob Chang Biol; 2016 Feb; 22(2):644-55. PubMed ID: 26340580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding vegetation phenology responses to easily ignored climate factors in china's mid-high latitudes.
    Wang Q; Chen H; Xu F; Bento VA; Zhang R; Wu X; Guo P
    Sci Rep; 2024 Apr; 14(1):8773. PubMed ID: 38627532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interpretation of vegetation phenology changes using daytime and night-time temperatures across the Yellow River Basin, China.
    Wang Y; Luo Y; Shafeeque M
    Sci Total Environ; 2019 Nov; 693():133553. PubMed ID: 31374493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature variations impacting leaf senescence initiation pathways alter leaf fall timing patterns in northern deciduous forests.
    Lang W; Chen X; Qian S; Schwartz MD
    Sci Total Environ; 2024 Jul; 934():173280. PubMed ID: 38768721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatio-temporal changes in the speed of canopy development and senescence in temperate China.
    Piao S; Wang J; Li X; Xu H; Zhang Y
    Glob Chang Biol; 2022 Dec; 28(24):7366-7375. PubMed ID: 36053942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model.
    Euskirchen ES; Carman TB; McGuire AD
    Glob Chang Biol; 2014 Mar; 20(3):963-78. PubMed ID: 24105949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species.
    Chen L; Huang JG; Ma Q; Hänninen H; Tremblay F; Bergeron Y
    Glob Chang Biol; 2019 Mar; 25(3):997-1004. PubMed ID: 30358002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vegetation photosynthetic phenology dataset in northern terrestrial ecosystems.
    Fang J; Li X; Xiao J; Yan X; Li B; Liu F
    Sci Data; 2023 May; 10(1):300. PubMed ID: 37208404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.