These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Direct Hydrothermal Deposition of Antimony Triselenide Films for Efficient Planar Heterojunction Solar Cells. Liu D; Tang R; Ma Y; Jiang C; Lian W; Li G; Han W; Zhu C; Chen T ACS Appl Mater Interfaces; 2021 Apr; 13(16):18856-18864. PubMed ID: 33871973 [TBL] [Abstract][Full Text] [Related]
3. Structural and electronic properties of CdTe Lingg M; Spescha A; Haass SG; Carron R; Buecheler S; Tiwari AN Sci Technol Adv Mater; 2018; 19(1):683-692. PubMed ID: 30294395 [TBL] [Abstract][Full Text] [Related]
4. Precursor Engineering of Solution-Processed Sb Li Y; Li R; Jia Z; Yu B; Yang Y; Bai S; Pollard M; Liu Y; Ma Y; Kampwerth H; Lin Q Small; 2024 Mar; 20(10):e2308895. PubMed ID: 37875777 [TBL] [Abstract][Full Text] [Related]
5. Regulating the crystal orientation of vapor-transport-deposited GeSe thin films by a post-annealing treatment. Zheng S; Qin D; Wang R; Pan Y; Weng G; Hu X; Chu J; Akiyama H; Chen S Appl Opt; 2024 Apr; 63(11):2752-2758. PubMed ID: 38856370 [TBL] [Abstract][Full Text] [Related]
6. Interfacial Engineering by Indium-Doped CdS for High Efficiency Solution Processed Sb Wu C; Jiang C; Wang X; Ding H; Ju H; Zhang L; Chen T; Zhu C ACS Appl Mater Interfaces; 2019 Jan; 11(3):3207-3213. PubMed ID: 30589526 [TBL] [Abstract][Full Text] [Related]
7. Direct synthesis of nanostructured silver antimony sulfide powders from metal xanthate precursors. Alharbi YT; Alam F; Salhi A; Missous M; Lewis DJ Sci Rep; 2021 Feb; 11(1):3053. PubMed ID: 33542323 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic Study of the Transition from Antimony Oxide to Antimony Sulfide in the Hydrothermal Process to Obtain Highly Efficient Solar Cells. Zhang L; Xiao P; Che B; Yang J; Cai Z; Wang H; Gao J; Liang W; Wu C; Chen T ChemSusChem; 2023 Apr; 16(7):e202202049. PubMed ID: 36628923 [TBL] [Abstract][Full Text] [Related]
9. Chemical Vapor Deposition of Superconducting FeTe Hu D; Ye C; Wang X; Zhao X; Kang L; Liu J; Duan R; Cao X; He Y; Hu J; Li S; Zeng Q; Deng Y; Yin PF; Ariando A; Huang Y; Zhang H; Wang XR; Liu Z Nano Lett; 2021 Jun; 21(12):5338-5344. PubMed ID: 34105969 [TBL] [Abstract][Full Text] [Related]
10. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Xiao M; Huang F; Huang W; Dkhissi Y; Zhu Y; Etheridge J; Gray-Weale A; Bach U; Cheng YB; Spiccia L Angew Chem Int Ed Engl; 2014 Sep; 53(37):9898-903. PubMed ID: 25047967 [TBL] [Abstract][Full Text] [Related]
11. Nanostructured p-type CZTS thin films prepared by a facile solution process for 3D p-n junction solar cells. Park SN; Sung SJ; Sim JH; Yang KJ; Hwang DK; Kim J; Kim GY; Jo W; Kim DH; Kang JK Nanoscale; 2015 Jul; 7(25):11182-9. PubMed ID: 26061271 [TBL] [Abstract][Full Text] [Related]
12. Optoelectronic Modulation of Silver Antimony Sulfide Thin Films for Photodetection. Yang Y; Huang H; Bai S; Yao F; Lin Q J Phys Chem Lett; 2022 Sep; 13(34):8086-8090. PubMed ID: 35997490 [TBL] [Abstract][Full Text] [Related]
13. Aqueous-Solution-Based Approach Towards Carbon-Free Sb Li S; Zhang Y; Tang R; Wang X; Zhang T; Jiang G; Liu W; Zhu C; Chen T ChemSusChem; 2018 Sep; 11(18):3208-3214. PubMed ID: 30048042 [TBL] [Abstract][Full Text] [Related]
14. Solution-processed Cu2ZnSnS4 superstrate solar cell using vertically aligned ZnO nanorods. Lee D; Yong K Nanotechnology; 2014 Feb; 25(6):065401. PubMed ID: 24434835 [TBL] [Abstract][Full Text] [Related]
15. CuIn(S,Se)(2) thin films prepared from a novel thioacetic acid-based solution and their photovoltaic application. Xie Y; Liu Y; Wang Y; Zhu X; Li A; Zhang L; Qin M; Lü X; Huang F Phys Chem Chem Phys; 2014 Apr; 16(16):7548-54. PubMed ID: 24632726 [TBL] [Abstract][Full Text] [Related]
16. Hidden energy levels? Carrier transport ability of CdS/CdS Gualdrón-Reyes AF; Meléndez AM; Tirado J; Mejia-Escobar MA; Jaramillo F; Niño-Gómez ME Nanoscale; 2019 Jan; 11(2):762-774. PubMed ID: 30566154 [TBL] [Abstract][Full Text] [Related]
17. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Liu C; Cheng YB; Ge Z Chem Soc Rev; 2020 Mar; 49(6):1653-1687. PubMed ID: 32134426 [TBL] [Abstract][Full Text] [Related]
18. How Does a SILAR CdSe Film Grow? Tuning the Deposition Steps to Suppress Interfacial Charge Recombination in Solar Cells. Becker MA; Radich EJ; Bunker BA; Kamat PV J Phys Chem Lett; 2014 May; 5(9):1575-82. PubMed ID: 26270098 [TBL] [Abstract][Full Text] [Related]
19. Influence of Solution Deposition Process on Modulating Majority Charge Carrier Type and Quality of Perovskite Thin Films for Solar Cells. Chang C; Zou X; Cheng J; Ling T; Yao Y; Chen D Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31390783 [TBL] [Abstract][Full Text] [Related]
20. Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se)2 Thin Film Solar Cells. Hossain MA; Wang M; Choy KL ACS Appl Mater Interfaces; 2015 Oct; 7(40):22497-503. PubMed ID: 26390182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]