These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 39040922)

  • 1. Development and validation of an interpretable machine learning for mortality prediction in patients with sepsis.
    He B; Qiu Z
    Front Artif Intell; 2024; 7():1348907. PubMed ID: 39040922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An interpretable machine learning model for predicting 28-day mortality in patients with sepsis-associated liver injury.
    Wen C; Zhang X; Li Y; Xiao W; Hu Q; Lei X; Xu T; Liang S; Gao X; Zhang C; Yu Z; Lü M
    PLoS One; 2024; 19(5):e0303469. PubMed ID: 38768153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.
    Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M
    Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting sepsis in-hospital mortality with machine learning: a multi-center study using clinical and inflammatory biomarkers.
    Zhang G; Shao F; Yuan W; Wu J; Qi X; Gao J; Shao R; Tang Z; Wang T
    Eur J Med Res; 2024 Mar; 29(1):156. PubMed ID: 38448999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretable Machine Learning for Early Prediction of Prognosis in Sepsis: A Discovery and Validation Study.
    Hu C; Li L; Huang W; Wu T; Xu Q; Liu J; Hu B
    Infect Dis Ther; 2022 Jun; 11(3):1117-1132. PubMed ID: 35399146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].
    Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation.
    Huang J; Chen H; Deng J; Liu X; Shu T; Yin C; Duan M; Fu L; Wang K; Zeng S
    Front Neurol; 2023; 14():1185447. PubMed ID: 37614971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach.
    Fan Z; Jiang J; Xiao C; Chen Y; Xia Q; Wang J; Fang M; Wu Z; Chen F
    J Transl Med; 2023 Jun; 21(1):406. PubMed ID: 37349774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Explainable Machine-Learning Model for Prediction of In-Hospital Mortality in Septic Patients Requiring Intensive Care Unit Readmission.
    Hu C; Li L; Li Y; Wang F; Hu B; Peng Z
    Infect Dis Ther; 2022 Aug; 11(4):1695-1713. PubMed ID: 35835943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases.
    Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S
    Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery.
    Chen X; Pan J; Li Y; Tang R
    Aging Clin Exp Res; 2023 Nov; 35(11):2643-2656. PubMed ID: 37733228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical decision support systems for 3-month mortality in elderly patients admitted to ICU with ischemic stroke using interpretable machine learning.
    Huang J; Liu X; Jin W
    Digit Health; 2024; 10():20552076241280126. PubMed ID: 39314817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explainable machine learning in outcome prediction of high-grade aneurysmal subarachnoid hemorrhage.
    Shu L; Yan H; Wu Y; Yan T; Yang L; Zhang S; Chen Z; Liao Q; Yang L; Xiao B; Ye M; Lv S; Wu M; Zhu X; Hu P
    Aging (Albany NY); 2024 Mar; 16(5):4654-4669. PubMed ID: 38431285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of 28-Day All-Cause Mortality in Heart Failure Patients with Clostridioides difficile Infection Using Machine Learning Models: Evidence from the MIMIC-IV Database.
    Shi C; Jie Q; Zhang H; Zhang X; Chu W; Chen C; Zhang Q; Hu Z
    Cardiology; 2024 Aug; ():1. PubMed ID: 39154641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explainable ensemble machine learning model for prediction of 28-day mortality risk in patients with sepsis-associated acute kidney injury.
    Yang J; Peng H; Luo Y; Zhu T; Xie L
    Front Med (Lausanne); 2023; 10():1165129. PubMed ID: 37275353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting acute kidney injury risk in acute myocardial infarction patients: An artificial intelligence model using medical information mart for intensive care databases.
    Cai D; Xiao T; Zou A; Mao L; Chi B; Wang Y; Wang Q; Ji Y; Sun L
    Front Cardiovasc Med; 2022; 9():964894. PubMed ID: 36158815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study.
    Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J
    J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparison of machine learning and Logistic regression model in predicting acute kidney injury after cardiac surgery: data analysis based on MIMIC-III database].
    Xiong W; Zhang L; She K; Xu G; Bai S; Liu X
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Nov; 34(11):1188-1193. PubMed ID: 36567564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretable machine learning model for early prediction of delirium in elderly patients following intensive care unit admission: a derivation and validation study.
    Tang D; Ma C; Xu Y
    Front Med (Lausanne); 2024; 11():1399848. PubMed ID: 38828233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models.
    Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J
    Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.