These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 39040937)

  • 1. deepAMPNet: a novel antimicrobial peptide predictor employing AlphaFold2 predicted structures and a bi-directional long short-term memory protein language model.
    Zhao F; Qiu J; Xiang D; Jiao P; Cao Y; Xu Q; Qiao D; Xu H; Cao Y
    PeerJ; 2024; 12():e17729. PubMed ID: 39040937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. sAMPpred-GAT: prediction of antimicrobial peptide by graph attention network and predicted peptide structure.
    Yan K; Lv H; Guo Y; Peng W; Liu B
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36342186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient hybrid deep learning architecture for predicting short antimicrobial peptides.
    Nguyen QH; Nguyen-Vo TH; Do TTT; Nguyen BP
    Proteomics; 2024 Jul; 24(14):e2300382. PubMed ID: 38837544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TP-LMMSG: a peptide prediction graph neural network incorporating flexible amino acid property representation.
    Chen N; Yu J; Zhe L; Wang F; Li X; Wong KC
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38920345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMPFinder: A computational model to identify antimicrobial peptides and their functions based on sequence-derived information.
    Yang S; Yang Z; Ni X
    Anal Biochem; 2023 Jul; 673():115196. PubMed ID: 37236434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble Machine Learning and Predicted Properties Promote Antimicrobial Peptide Identification.
    Zhong G; Liu H; Deng L
    Interdiscip Sci; 2024 Jul; ():. PubMed ID: 38972032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo synthetic antimicrobial peptide design with a recurrent neural network.
    Li C; Sutherland D; Richter A; Coombe L; Yanai A; Warren RL; Kotkoff M; Hof F; Hoang LMN; Helbing CC; Birol I
    Protein Sci; 2024 Aug; 33(8):e5088. PubMed ID: 38988311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities.
    Xu J; Li F; Li C; Guo X; Landersdorfer C; Shen HH; Peleg AY; Li J; Imoto S; Yao J; Akutsu T; Song J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37369638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMPpred-MFA: An Interpretable Antimicrobial Peptide Predictor with a Stacking Architecture, Multiple Features, and Multihead Attention.
    Li C; Zou Q; Jia C; Zheng J
    J Chem Inf Model; 2024 Apr; 64(7):2393-2404. PubMed ID: 37799091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMP-RNNpro: a two-stage approach for identification of antimicrobials using probabilistic features.
    Shaon MSH; Karim T; Sultan MF; Ali MM; Ahmed K; Hasan MZ; Moustafa A; Bui FM; Al-Zahrani FA
    Sci Rep; 2024 Jun; 14(1):12892. PubMed ID: 38839785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types.
    Xiao X; Shao YT; Cheng X; Stamatovic B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34086856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel antibacterial peptide recognition algorithm based on BERT.
    Zhang Y; Lin J; Zhao L; Zeng X; Liu X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34037687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of plant vacuole proteins by using graph neural network and contact maps.
    Sui J; Chen J; Chen Y; Iwamori N; Sun J
    BMC Bioinformatics; 2023 Sep; 24(1):357. PubMed ID: 37740195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting residue-specific qualities of individual protein models using residual neural networks and graph neural networks.
    Zhao C; Liu T; Wang Z
    Proteins; 2022 Dec; 90(12):2091-2102. PubMed ID: 35842895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMPActiPred: A three-stage framework for predicting antibacterial peptides and activity levels with deep forest.
    Yao L; Guan J; Xie P; Chung CR; Deng J; Huang Y; Chiang YC; Lee TY
    Protein Sci; 2024 Jun; 33(6):e5006. PubMed ID: 38723168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. E-CLEAP: An ensemble learning model for efficient and accurate identification of antimicrobial peptides.
    Wang SC
    PLoS One; 2024; 19(5):e0300125. PubMed ID: 38722967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial peptide identification using multi-scale convolutional network.
    Su X; Xu J; Yin Y; Quan X; Zhang H
    BMC Bioinformatics; 2019 Dec; 20(1):730. PubMed ID: 31870282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial peptides recognition using weighted physicochemical property encoding.
    Na S; Wannigama DL; Saethang T
    J Bioinform Comput Biol; 2023 Apr; 21(2):2350006. PubMed ID: 37120707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AniAMPpred: artificial intelligence guided discovery of novel antimicrobial peptides in animal kingdom.
    Sharma R; Shrivastava S; Kumar Singh S; Kumar A; Saxena S; Kumar Singh R
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34259329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CL-ACP: a parallel combination of CNN and LSTM anticancer peptide recognition model.
    Wang H; Zhao J; Zhao H; Li H; Wang J
    BMC Bioinformatics; 2021 Oct; 22(1):512. PubMed ID: 34670488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.