These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 39041055)
1. CT-based radiomics combined with clinical features for invasiveness prediction and pathological subtypes classification of subsolid pulmonary nodules. Liu M; Duan R; Xu Z; Fu Z; Li Z; Pan A; Lin Y Eur J Radiol Open; 2024 Dec; 13():100584. PubMed ID: 39041055 [TBL] [Abstract][Full Text] [Related]
2. CT features and quantitative analysis of subsolid nodule lung adenocarcinoma for pathological classification prediction. Li X; Zhang W; Yu Y; Zhang G; Zhou L; Wu Z; Liu B BMC Cancer; 2020 Jan; 20(1):60. PubMed ID: 31992239 [TBL] [Abstract][Full Text] [Related]
3. Radiomic signature based on CT imaging to distinguish invasive adenocarcinoma from minimally invasive adenocarcinoma in pure ground-glass nodules with pleural contact. Jiang Y; Che S; Ma S; Liu X; Guo Y; Liu A; Li G; Li Z Cancer Imaging; 2021 Jan; 21(1):1. PubMed ID: 33407884 [TBL] [Abstract][Full Text] [Related]
4. A triple-classification for the evaluation of lung nodules manifesting as pure ground-glass sign: a CT-based radiomic analysis. Yu Z; Xu C; Zhang Y; Ji F BMC Med Imaging; 2022 Jul; 22(1):133. PubMed ID: 35896975 [TBL] [Abstract][Full Text] [Related]
5. Discriminating invasive adenocarcinoma among lung pure ground-glass nodules: a multi-parameter prediction model. Hu F; Huang H; Jiang Y; Feng M; Wang H; Tang M; Zhou Y; Tan X; Liu Y; Xu C; Ding N; Bai C; Hu J; Yang D; Zhang Y J Thorac Dis; 2021 Sep; 13(9):5383-5394. PubMed ID: 34659805 [TBL] [Abstract][Full Text] [Related]
6. CT-Assisted Improvements in the Accuracy of the Intraoperative Frozen Section Examination of Ground-Glass Density Nodules. Xinli W; Xiaoshuang S; Chengxin Y; Qiang Z Comput Math Methods Med; 2022; 2022():8967643. PubMed ID: 35035526 [TBL] [Abstract][Full Text] [Related]
7. Whole-Lesion Computed Tomography-Based Entropy Parameters for the Differentiation of Minimally Invasive and Invasive Adenocarcinomas Appearing as Pulmonary Subsolid Nodules. Chen X; Feng B; Chen Y; Hao Y; Duan X; Cui E; Liu Z; Zhang C; Long W J Comput Assist Tomogr; 2019; 43(5):817-824. PubMed ID: 31343995 [TBL] [Abstract][Full Text] [Related]
8. [Establishment and analysis of prediction model for invasive subsolid pulmonary nodules based on radiomics]. Wu XL; Xu QZ; Chen T; Wang FL; Jiang WH; Lyu GM; Lu G Zhonghua Yi Xue Za Zhi; 2022 Jan; 102(3):209-215. PubMed ID: 35042290 [No Abstract] [Full Text] [Related]
9. Qualitative and quantitative imaging features of pulmonary subsolid nodules: differentiating invasive adenocarcinoma from minimally invasive adenocarcinoma and preinvasive lesions. Qi L; Lu W; Yang L; Tang W; Zhao S; Huang Y; Wu N; Wang J J Thorac Dis; 2019 Nov; 11(11):4835-4846. PubMed ID: 31903274 [TBL] [Abstract][Full Text] [Related]
10. A radiomics nomogram for invasiveness prediction in lung adenocarcinoma manifesting as part-solid nodules with solid components smaller than 6 mm. Zhang T; Zhang C; Zhong Y; Sun Y; Wang H; Li H; Yang G; Zhu Q; Yuan M Front Oncol; 2022; 12():900049. PubMed ID: 36033463 [TBL] [Abstract][Full Text] [Related]
11. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction. Sun Y; Li C; Jin L; Gao P; Zhao W; Ma W; Tan M; Wu W; Duan S; Shan Y; Li M Eur Radiol; 2020 Jul; 30(7):3650-3659. PubMed ID: 32162003 [TBL] [Abstract][Full Text] [Related]
12. Predicting the invasiveness of lung adenocarcinomas appearing as ground-glass nodule on CT scan using multi-task learning and deep radiomics. Wang X; Li Q; Cai J; Wang W; Xu P; Zhang Y; Fang Q; Fu C; Fan L; Xiao Y; Liu S Transl Lung Cancer Res; 2020 Aug; 9(4):1397-1406. PubMed ID: 32953512 [TBL] [Abstract][Full Text] [Related]
13. Estimation of pathological subtypes in subsolid lung nodules using artificial intelligence. Hu X; Yang L; Kang T; Yu H; Zhao T; Huang Y; Kong Y Heliyon; 2024 Aug; 10(15):e34863. PubMed ID: 39170291 [TBL] [Abstract][Full Text] [Related]
14. [Value of PET/CT Combined with CT Three-dimensional Reconstruction in Distinguishing Different Pathological Subtypes of Early Lung Adenocarcinoma]. You J; Zhang G; Gao X; Chen Y; Shu Y Zhongguo Fei Ai Za Zhi; 2021 Jul; 24(7):468-474. PubMed ID: 34120430 [TBL] [Abstract][Full Text] [Related]
15. Multi-classification model incorporating radiomics and clinic-radiological features for predicting invasiveness and differentiation of pulmonary adenocarcinoma nodules. Sun H; Zhang C; Ouyang A; Dai Z; Song P; Yao J Biomed Eng Online; 2023 Nov; 22(1):112. PubMed ID: 38037082 [TBL] [Abstract][Full Text] [Related]
16. Feature-shared adaptive-boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images. Wang J; Chen X; Lu H; Zhang L; Pan J; Bao Y; Su J; Qian D Med Phys; 2020 Apr; 47(4):1738-1749. PubMed ID: 32020649 [TBL] [Abstract][Full Text] [Related]
17. Predicting the Ki-67 proliferation index in pulmonary adenocarcinoma patients presenting with subsolid nodules: construction of a nomogram based on CT images. Yan J; Xue X; Gao C; Guo Y; Wu L; Zhou C; Chen F; Xu M Quant Imaging Med Surg; 2022 Jan; 12(1):642-652. PubMed ID: 34993108 [TBL] [Abstract][Full Text] [Related]
18. Value of TSCT Features for Differentiating Preinvasive and Minimally Invasive Adenocarcinoma From Invasive Adenocarcinoma Presenting as Subsolid Nodules Smaller Than 3 cm. Wang H; Weng Q; Hui J; Fang S; Wu X; Mao W; Chen M; Zheng L; Wang Z; Zhao Z; Zhou L; Tu J; Xu M; Huang Y; Ji J Acad Radiol; 2020 Mar; 27(3):395-403. PubMed ID: 31201034 [TBL] [Abstract][Full Text] [Related]
19. Development and Validation a Nomogram Incorporating CT Radiomics Signatures and Radiological Features for Differentiating Invasive Adenocarcinoma From Adenocarcinoma Shi L; Shi W; Peng X; Zhan Y; Zhou L; Wang Y; Feng M; Zhao J; Shan F; Liu L Front Oncol; 2021; 11():618677. PubMed ID: 33968722 [TBL] [Abstract][Full Text] [Related]
20. Predicting invasion in early-stage ground-glass opacity pulmonary adenocarcinoma: a radiomics-based machine learning approach. Bin J; Wu M; Huang M; Liao Y; Yang Y; Shi X; Tao S BMC Med Imaging; 2024 Sep; 24(1):240. PubMed ID: 39272029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]