These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 39041812)
1. Study on the metabolic changes and regulatory mechanism of Jia S; Li C; An Y; Qi D Microbiol Spectr; 2024 Sep; 12(9):e0010824. PubMed ID: 39041812 [No Abstract] [Full Text] [Related]
2. New Insights of Transcriptional Regulator AflR in Aspergillus flavus Physiology. Wang P; Xu J; Chang PK; Liu Z; Kong Q Microbiol Spectr; 2022 Feb; 10(1):e0079121. PubMed ID: 35080432 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional Stages of Conidia Germination and Associated Genes in Li C; Jia S; Rajput SA; Qi D; Wang S Toxins (Basel); 2022 Aug; 14(8):. PubMed ID: 36006223 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomic, Protein-DNA Interaction, and Metabolomic Studies of VosA, VelB, and WetA in Aspergillus nidulans Asexual Spores. Wu MY; Mead ME; Lee MK; Neuhaus GF; Adpressa DA; Martien JI; Son YE; Moon H; Amador-Noguez D; Han KH; Rokas A; Loesgen S; Yu JH; Park HS mBio; 2021 Feb; 12(1):. PubMed ID: 33563821 [TBL] [Abstract][Full Text] [Related]
5. Aspergillus flavus SUMO Contributes to Fungal Virulence and Toxin Attributes. Nie X; Yu S; Qiu M; Wang X; Wang Y; Bai Y; Zhang F; Wang S J Agric Food Chem; 2016 Sep; 64(35):6772-82. PubMed ID: 27532332 [TBL] [Abstract][Full Text] [Related]
6. Comparative transcriptome analysis revealing dormant conidia and germination associated genes in Aspergillus species: an essential role for AtfA in conidial dormancy. Hagiwara D; Takahashi H; Kusuya Y; Kawamoto S; Kamei K; Gonoi T BMC Genomics; 2016 May; 17():358. PubMed ID: 27185182 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome Sequencing Revealed an Inhibitory Mechanism of Yang K; Geng Q; Song F; He X; Hu T; Wang S; Tian J Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32977505 [TBL] [Abstract][Full Text] [Related]
8. The role of the VosA-repressed dnjA gene in development and metabolism in Aspergillus species. Son YE; Cho HJ; Chen W; Son SH; Lee MK; Yu JH; Park HS Curr Genet; 2020 Jun; 66(3):621-633. PubMed ID: 32060628 [TBL] [Abstract][Full Text] [Related]
9. An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus. Han G; Shao Q; Li C; Zhao K; Jiang L; Fan J; Jiang H; Tao F J Microbiol; 2018 May; 56(5):356-364. PubMed ID: 29721833 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the velvet regulators in Aspergillus flavus. Eom TJ; Moon H; Yu JH; Park HS J Microbiol; 2018 Dec; 56(12):893-901. PubMed ID: 30361976 [TBL] [Abstract][Full Text] [Related]
11. Regulation of Morphology, Aflatoxin Production, and Virulence of Fasoyin OE; Yang K; Qiu M; Wang B; Wang S; Wang S Toxins (Basel); 2019 Dec; 11(12):. PubMed ID: 31835504 [No Abstract] [Full Text] [Related]
12. Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production. Chang PK; Scharfenstein LL; Li P; Ehrlich KC Fungal Genet Biol; 2013; 58-59():71-9. PubMed ID: 23994319 [TBL] [Abstract][Full Text] [Related]
13. Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Kale SP; Milde L; Trapp MK; Frisvad JC; Keller NP; Bok JW Fungal Genet Biol; 2008 Oct; 45(10):1422-9. PubMed ID: 18667168 [TBL] [Abstract][Full Text] [Related]
14. Aqueous extracts of Tulbaghia violacea inhibit germination of Aspergillus flavus and Aspergillus parasiticus conidia. Somai BM; Belewa V J Food Prot; 2011 Jun; 74(6):1007-11. PubMed ID: 21669082 [TBL] [Abstract][Full Text] [Related]
15. Nano-LC-Q-TOF Analysis of Proteome Revealed Germination of Aspergillus flavus Conidia is Accompanied by MAPK Signalling and Cell Wall Modulation. Tiwari S; Thakur R; Goel G; Shankar J Mycopathologia; 2016 Dec; 181(11-12):769-786. PubMed ID: 27576557 [TBL] [Abstract][Full Text] [Related]
16. Loss of msnA, a putative stress regulatory gene, in Aspergillus parasiticus and Aspergillus flavus increased production of conidia, aflatoxins and kojic acid. Chang PK; Scharfenstein LL; Luo M; Mahoney N; Molyneux RJ; Yu J; Brown RL; Campbell BC Toxins (Basel); 2011 Jan; 3(1):82-104. PubMed ID: 22069691 [TBL] [Abstract][Full Text] [Related]
17. The Aspergillus flavus Homeobox Gene, hbx1, is Required for Development and Aflatoxin Production. Cary JW; Harris-Coward P; Scharfenstein L; Mack BM; Chang PK; Wei Q; Lebar M; Carter-Wientjes C; Majumdar R; Mitra C; Banerjee S; Chanda A Toxins (Basel); 2017 Oct; 9(10):. PubMed ID: 29023405 [TBL] [Abstract][Full Text] [Related]
18. The 14-3-3 Protein Homolog ArtA Regulates Development and Secondary Metabolism in the Opportunistic Plant Pathogen Aspergillus flavus. Ibarra BA; Lohmar JM; Satterlee T; McDonald T; Cary JW; Calvo AM Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29247055 [TBL] [Abstract][Full Text] [Related]
19. Aspergillus flavus GPI-anchored protein-encoding ecm33 has a role in growth, development, aflatoxin biosynthesis, and maize infection. Chang PK; Zhang Q; Scharfenstein L; Mack B; Yoshimi A; Miyazawa K; Abe K Appl Microbiol Biotechnol; 2018 Jun; 102(12):5209-5220. PubMed ID: 29696338 [TBL] [Abstract][Full Text] [Related]
20. The Regulatory Mechanism of Water Activities on Aflatoxins Biosynthesis and Conidia Development, and Transcription Factor AtfB Is Involved in This Regulation. Ma L; Li X; Ma X; Yu Q; Yu X; Liu Y; Nie C; Zhang Y; Xing F Toxins (Basel); 2021 Jun; 13(6):. PubMed ID: 34205815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]