These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 39041914)

  • 21. Safe "cloudification" of large images through picker APIs.
    Bremer E; Kurc T; Gao Y; Saltz J; Almeida JS
    AMIA Annu Symp Proc; 2016; 2016():342-351. PubMed ID: 28269829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CloudBrain-MRS: An intelligent cloud computing platform for in vivo magnetic resonance spectroscopy preprocessing, quantification, and analysis.
    Chen X; Li J; Chen D; Zhou Y; Tu Z; Lin M; Kang T; Lin J; Gong T; Zhu L; Zhou J; Lin OY; Guo J; Dong J; Guo D; Qu X
    J Magn Reson; 2024 Jan; 358():107601. PubMed ID: 38039654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Limits for Resolving Isobaric Tandem Mass Tag Reporter Ions Using Phase-Constrained Spectrum Deconvolution.
    Kelstrup CD; Aizikov K; Batth TS; Kreutzman A; Grinfeld D; Lange O; Mourad D; Makarov AA; Olsen JV
    J Proteome Res; 2018 Nov; 17(11):4008-4016. PubMed ID: 30220210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D-MSNet: a point cloud-based deep learning model for untargeted feature detection and quantification in profile LC-HRMS data.
    Wang R; Lu M; An S; Wang J; Yu C
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37071700
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ProteoModlR for functional proteomic analysis.
    Cifani P; Shakiba M; Chhangawala S; Kentsis A
    BMC Bioinformatics; 2017 Mar; 18(1):153. PubMed ID: 28259147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The APEX Quantitative Proteomics Tool: generating protein quantitation estimates from LC-MS/MS proteomics results.
    Braisted JC; Kuntumalla S; Vogel C; Marcotte EM; Rodrigues AR; Wang R; Huang ST; Ferlanti ES; Saeed AI; Fleischmann RD; Peterson SN; Pieper R
    BMC Bioinformatics; 2008 Dec; 9():529. PubMed ID: 19068132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deploying Mass Spectrometric Data Analysis in the Amazon AWS Cloud Computing Environment.
    Katz JE
    Methods Mol Biol; 2021; 2271():375-397. PubMed ID: 33908021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Processing shotgun proteomics data on the Amazon cloud with the trans-proteomic pipeline.
    Slagel J; Mendoza L; Shteynberg D; Deutsch EW; Moritz RL
    Mol Cell Proteomics; 2015 Feb; 14(2):399-404. PubMed ID: 25418363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling.
    Chapman JD; Goodlett DR; Masselon CD
    Mass Spectrom Rev; 2014; 33(6):452-70. PubMed ID: 24281846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MSstatsShiny: A GUI for Versatile, Scalable, and Reproducible Statistical Analyses of Quantitative Proteomic Experiments.
    Kohler D; Kaza M; Pasi C; Huang T; Staniak M; Mohandas D; Sabido E; Choi M; Vitek O
    J Proteome Res; 2023 Feb; 22(2):551-556. PubMed ID: 36622173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A multi-model statistical approach for proteomic spectral count quantitation.
    Branson OE; Freitas MA
    J Proteomics; 2016 Jul; 144():23-32. PubMed ID: 27260494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud.
    Afgan E; Sloggett C; Goonasekera N; Makunin I; Benson D; Crowe M; Gladman S; Kowsar Y; Pheasant M; Horst R; Lonie A
    PLoS One; 2015; 10(10):e0140829. PubMed ID: 26501966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud computing.
    Mendez KM; Pritchard L; Reinke SN; Broadhurst DI
    Metabolomics; 2019 Sep; 15(10):125. PubMed ID: 31522294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SEAseq: a portable and cloud-based chromatin occupancy analysis suite.
    Adetunji MO; Abraham BJ
    BMC Bioinformatics; 2022 Feb; 23(1):77. PubMed ID: 35193506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TKO6: A Peptide Standard To Assess Interference for Unit-Resolved Isobaric Labeling Platforms.
    Paulo JA; Navarrete-Perea J; Guha Thakurta S; Gygi SP
    J Proteome Res; 2019 Jan; 18(1):565-570. PubMed ID: 30481031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient visualization of high-throughput targeted proteomics experiments: TAPIR.
    Röst HL; Rosenberger G; Aebersold R; Malmström L
    Bioinformatics; 2015 Jul; 31(14):2415-7. PubMed ID: 25788625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ProteomicsML: An Online Platform for Community-Curated Data sets and Tutorials for Machine Learning in Proteomics.
    Rehfeldt TG; Gabriels R; Bouwmeester R; Gessulat S; Neely BA; Palmblad M; Perez-Riverol Y; Schmidt T; Vizcaíno JA; Deutsch EW
    J Proteome Res; 2023 Feb; 22(2):632-636. PubMed ID: 36693629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Perseus computational platform for comprehensive analysis of (prote)omics data.
    Tyanova S; Temu T; Sinitcyn P; Carlson A; Hein MY; Geiger T; Mann M; Cox J
    Nat Methods; 2016 Sep; 13(9):731-40. PubMed ID: 27348712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining Targeted and Untargeted Data Acquisition to Enhance Quantitative Plant Proteomics Experiments.
    Hart-Smith G
    Methods Mol Biol; 2020; 2139():169-178. PubMed ID: 32462586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MSLibrarian: Optimized Predicted Spectral Libraries for Data-Independent Acquisition Proteomics.
    Isaksson M; Karlsson C; Laurell T; Kirkeby A; Heusel M
    J Proteome Res; 2022 Feb; 21(2):535-546. PubMed ID: 35042333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.