These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 39042095)
1. Unveil sleep spindles with concentration of frequency and time (ConceFT). Shimizu R; Wu HT Physiol Meas; 2024 Aug; 45(8):. PubMed ID: 39042095 [No Abstract] [Full Text] [Related]
2. Enhanced automated sleep spindle detection algorithm based on synchrosqueezing. Kabir MM; Tafreshi R; Boivin DB; Haddad N Med Biol Eng Comput; 2015 Jul; 53(7):635-44. PubMed ID: 25779627 [TBL] [Abstract][Full Text] [Related]
3. Deep Learning-Based Classification of Epileptic Electroencephalography Signals Using a Concentrated Time-Frequency Approach. Yousif MAA; Ozturk M Int J Neural Syst; 2023 Dec; 33(12):2350064. PubMed ID: 37830300 [TBL] [Abstract][Full Text] [Related]
4. A personalized semi-automatic sleep spindle detection (PSASD) framework. Kafashan M; Gupte G; Kang P; Hyche O; Luong AH; Prateek GV; Ju YS; Palanca BJA J Neurosci Methods; 2024 Jul; 407():110064. PubMed ID: 38301832 [TBL] [Abstract][Full Text] [Related]
5. Spindler: a framework for parametric analysis and detection of spindles in EEG with application to sleep spindles. LaRocco J; Franaszczuk PJ; Kerick S; Robbins K J Neural Eng; 2018 Dec; 15(6):066015. PubMed ID: 30132445 [TBL] [Abstract][Full Text] [Related]
11. Assessing EEG sleep spindle propagation. Part 1: theory and proposed methodology. O'Reilly C; Nielsen T J Neurosci Methods; 2014 Jan; 221():202-14. PubMed ID: 23999176 [TBL] [Abstract][Full Text] [Related]
12. Potential dementia biomarkers based on the time-varying microstructure of sleep EEG spindles. Ktonas PY; Golemati S; Xanthopoulos P; Sakkalis V; Ortigueira MD; Tsekou H; Zervakis M; Paparrigopoulos T; Soldatos CR Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2464-7. PubMed ID: 18002493 [TBL] [Abstract][Full Text] [Related]
13. Sleep spindles and spike-wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis. Sitnikova E; Hramov AE; Koronovsky AA; van Luijtelaar G J Neurosci Methods; 2009 Jun; 180(2):304-16. PubMed ID: 19383511 [TBL] [Abstract][Full Text] [Related]
14. Spindle Detection Based on Elastic Time Window and Spatial Pyramid Pooling. Ou Y; Wang F; Feng B; Tang L; Pan J J Integr Neurosci; 2024 Jul; 23(7):134. PubMed ID: 39082284 [TBL] [Abstract][Full Text] [Related]
15. Sleep Spindle Detection Using RUSBoost and Synchrosqueezed Wavelet Transform. Kinoshita T; Fujiwara K; Kano M; Ogawa K; Sumi Y; Matsuo M; Kadotani H IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):390-398. PubMed ID: 31944960 [TBL] [Abstract][Full Text] [Related]
16. DiBa: a data-driven Bayesian algorithm for sleep spindle detection. Babadi B; McKinney SM; Tarokh V; Ellenbogen JM IEEE Trans Biomed Eng; 2012 Feb; 59(2):483-93. PubMed ID: 22084041 [TBL] [Abstract][Full Text] [Related]
17. Detection of K-complexes and sleep spindles (DETOKS) using sparse optimization. Parekh A; Selesnick IW; Rapoport DM; Ayappa I J Neurosci Methods; 2015 Aug; 251():37-46. PubMed ID: 25956566 [TBL] [Abstract][Full Text] [Related]
18. Spindle-AI: Sleep Spindle Number and Duration Estimation in Infant EEG. Wei L; Ventura S; Mathieson S; Boylan G; Lowery M; Mooney C IEEE Trans Biomed Eng; 2022 Jan; 69(1):465-474. PubMed ID: 34280088 [TBL] [Abstract][Full Text] [Related]
19. Sleep spindle detection through amplitude-frequency normal modelling. Nonclercq A; Urbain C; Verheulpen D; Decaestecker C; Van Bogaert P; Peigneux P J Neurosci Methods; 2013 Apr; 214(2):192-203. PubMed ID: 23370313 [TBL] [Abstract][Full Text] [Related]
20. Sleep-spindle identification on EEG signals from polysomnographie recordings using correntropy. Ulloa S; Estevez PA; Huijse P; Held CM; Perez CA; Chamorro R; Garrido M; Algarin C; Peirano P Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3736-3739. PubMed ID: 28269102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]