These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 39042527)

  • 1. Enhance Kinesthetic Experience in Perceptual Learning for Welding Motor Skill Acquisition with Virtual Reality and Robot-based Haptic Guidance.
    Ye Y; Xia P; Xu F; Du J
    IEEE Trans Haptics; 2024 Jul; PP():. PubMed ID: 39042527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke.
    De Santis D; Zenzeri J; Casadio M; Masia L; Riva A; Morasso P; Squeri V
    Front Hum Neurosci; 2014; 8():1037. PubMed ID: 25601833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haptic Guidance and Haptic Error Amplification in a Virtual Surgical Robotic Training Environment.
    Oquendo YA; Coad MM; Wren SM; Lendvay TS; Nisky I; Jarc AM; Okamura AM; Chua Z
    IEEE Trans Haptics; 2024; 17(3):417-428. PubMed ID: 38194379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support.
    Özen Ö; Buetler KA; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experience-based virtual training system for knee arthroscopic inspection.
    Lyu SR; Lin YK; Huang ST; Yau HT
    Biomed Eng Online; 2013 Jul; 12():63. PubMed ID: 23826988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic Assistance by Impedance Compensation for Hand Movements While Manual Welding.
    Erden MS; Billard A
    IEEE Trans Cybern; 2016 Nov; 46(11):2459-2472. PubMed ID: 26452294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Methods for training of robot-assisted radical prostatectomy].
    Rapoport LM; Bezrukov EA; Tsarichenko DG; Martirosyan GA; Sukhanov RB; Krupinov GE; Slusarenco RI; Morozov AO; Avakyan SK; Sargsyan NA
    Khirurgiia (Mosk); 2019; (1):89-94. PubMed ID: 30789615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac X-ray image-based haptic guidance for robot-assisted coronary intervention: a feasibility study.
    Tahir A; Iqbal H; Usman M; Ghaffar A; Hafeez A
    Int J Comput Assist Radiol Surg; 2022 Mar; 17(3):531-539. PubMed ID: 35041132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-based laparoscopic and robotic surgical simulators: performance characteristics and perceptions of new users.
    Lin DW; Romanelli JR; Kuhn JN; Thompson RE; Bush RW; Seymour NE
    Surg Endosc; 2009 Jan; 23(1):209-14. PubMed ID: 18297349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutual Skill Learning and Adaptability to Others via Haptic Interaction.
    Saracbasi OO; Harwin W; Kondo T; Hayashi Y
    Front Neurorobot; 2021; 15():760132. PubMed ID: 34924991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can a virtual reality surgical simulation training provide a self-driven and mentor-free skills learning? Investigation of the practical influence of the performance metrics from the virtual reality robotic surgery simulator on the skill learning and associated cognitive workloads.
    Lee GI; Lee MR
    Surg Endosc; 2018 Jan; 32(1):62-72. PubMed ID: 28634632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Objective Assessment of Laparoscopic Force and Psychomotor Skills in a Novel Virtual Reality-Based Haptic Simulator.
    Prasad MS; Manivannan M; Manoharan G; Chandramohan SM
    J Surg Educ; 2016; 73(5):858-69. PubMed ID: 27267563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haptic based fundamentals of laparoscopic surgery simulation for training with objective assessments.
    Abinaya P; Manivannan M
    Front Robot AI; 2024; 11():1363952. PubMed ID: 38873121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensor-Enabled Multi-Robot System for Automated Welding and In-Process Ultrasonic NDE.
    Vasilev M; MacLeod CN; Loukas C; Javadi Y; Vithanage RKW; Lines D; Mohseni E; Pierce SG; Gachagan A
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of haptic guidance and visual feedback on learning a complex tennis task.
    Marchal-Crespo L; van Raai M; Rauter G; Wolf P; Riener R
    Exp Brain Res; 2013 Nov; 231(3):277-91. PubMed ID: 24013789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Load cell torques and force data collection during tele-operated robotic gas tungsten arc welding in presence of collisions.
    Tannous M; Bologna F; Stefanini C
    Data Brief; 2020 Aug; 31():105981. PubMed ID: 32695853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital Twin Virtual Welding Approach of Robotic Friction Stir Welding Based on Co-Simulation of FEA Model and Robotic Model.
    Chen S; Zong G; Kang C; Jiang X
    Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Systematic Review of Virtual Reality Simulators for Robot-assisted Surgery.
    Moglia A; Ferrari V; Morelli L; Ferrari M; Mosca F; Cuschieri A
    Eur Urol; 2016 Jun; 69(6):1065-80. PubMed ID: 26433570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promoting Motor Variability During Robotic Assistance Enhances Motor Learning of Dynamic Tasks.
    Özen Ö; Buetler KA; Marchal-Crespo L
    Front Neurosci; 2020; 14():600059. PubMed ID: 33603642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haptic Error Modulation Outperforms Visual Error Amplification When Learning a Modified Gait Pattern.
    Marchal-Crespo L; Tsangaridis P; Obwegeser D; Maggioni S; Riener R
    Front Neurosci; 2019; 13():61. PubMed ID: 30837824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.