These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 39042659)

  • 1. CircRNA_012164/MicroRNA-9-5p axis mediates cardiac fibrosis in diabetic cardiomyopathy.
    Wang H; Wang EZR; Feng B; Chakrabarti S
    PLoS One; 2024; 19(7):e0302772. PubMed ID: 39042659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of circHIPK3 in the pathogenesis of diabetic cardiomyopathy in mice.
    Wang W; Zhang S; Xu L; Feng Y; Wu X; Zhang M; Yu Z; Zhou X
    Diabetologia; 2021 Mar; 64(3):681-692. PubMed ID: 33398455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MiR-18a-5p inhibits endothelial-mesenchymal transition and cardiac fibrosis through the Notch2 pathway.
    Geng H; Guan J
    Biochem Biophys Res Commun; 2017 Sep; 491(2):329-336. PubMed ID: 28733035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Investigation on the differentially expressed circular RNAs in myocardium of mice with diabetic cardiomyopathy].
    Wu XG; Zhang SC; Zhou X
    Zhonghua Xin Xue Guan Bing Za Zhi; 2022 May; 50(5):501-508. PubMed ID: 35589600
    [No Abstract]   [Full Text] [Related]  

  • 5. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts.
    Tang CM; Zhang M; Huang L; Hu ZQ; Zhu JN; Xiao Z; Zhang Z; Lin QX; Zheng XL; -Yang M; Wu SL; Cheng JD; Shan ZX
    Sci Rep; 2017 Jan; 7():40342. PubMed ID: 28079129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human umbilical cord-derived mesenchymal stromal cells improve myocardial fibrosis and restore miRNA-133a expression in diabetic cardiomyopathy.
    Liu B; Wei Y; He J; Feng B; Chen Y; Guo R; Griffin MD; Hynes SO; Shen S; Liu Y; Cui H; Ma J; O'Brien T
    Stem Cell Res Ther; 2024 Apr; 15(1):120. PubMed ID: 38659015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1.
    Zhou B; Yu JW
    Biochem Biophys Res Commun; 2017 Jun; 487(4):769-775. PubMed ID: 28412345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long noncoding RNA Crnde attenuates cardiac fibrosis via Smad3-Crnde negative feedback in diabetic cardiomyopathy.
    Zheng D; Zhang Y; Hu Y; Guan J; Xu L; Xiao W; Zhong Q; Ren C; Lu J; Liang J; Hou J
    FEBS J; 2019 May; 286(9):1645-1655. PubMed ID: 30748104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miR-34a attenuates myocardial fibrosis in diabetic cardiomyopathy mice via targeting Pin-1.
    Zhang XL; Zhang G; Bai ZH
    Cell Biol Int; 2021 Mar; 45(3):642-653. PubMed ID: 33289184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of non-coding RNA in diabetic cardiomyopathy.
    Yao X; Huang X; Chen J; Lin W; Tian J
    Cardiovasc Diabetol; 2024 Jun; 23(1):227. PubMed ID: 38951895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CircularRNA circ_0071269 knockdown protects against from diabetic cardiomyopathy injury by microRNA-145/gasdermin A axis.
    Fu L; Zhang J; Lin Z; Li Y; Qin G
    Bioengineered; 2022 Feb; 13(2):2398-2411. PubMed ID: 35034587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4.
    Li H; Xu JD; Fang XH; Zhu JN; Yang J; Pan R; Yuan SJ; Zeng N; Yang ZZ; Yang H; Wang XP; Duan JZ; Wang S; Luo JF; Wu SL; Shan ZX
    Cardiovasc Res; 2020 Jun; 116(7):1323-1334. PubMed ID: 31397837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CircMAP3K5 promotes cardiomyocyte apoptosis in diabetic cardiomyopathy by regulating miR-22-3p/DAPK2 Axis.
    Shen M; Wu Y; Li L; Zhang L; Liu G; Wang R
    J Diabetes; 2024 Jan; 16(1):e13471. PubMed ID: 37735821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA-193-5p modulates angiogenesis through IGF2 in type 2 diabetic cardiomyopathy.
    Yi F; Shang Y; Li B; Dai S; Wu W; Cheng L; Wang X
    Biochem Biophys Res Commun; 2017 Sep; 491(4):876-882. PubMed ID: 28735866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miR-30a-5p inhibits the proliferation and collagen formation of cardiac fibroblasts in diabetic cardiomyopathy.
    Yang XX; Zhao ZY
    Can J Physiol Pharmacol; 2022 Feb; 100(2):167-175. PubMed ID: 35025607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circ_WBSCR17 aggravates inflammatory responses and fibrosis by targeting miR-185-5p/SOX6 regulatory axis in high glucose-induced human kidney tubular cells.
    Li G; Qin Y; Qin S; Zhou X; Zhao W; Zhang D
    Life Sci; 2020 Oct; 259():118269. PubMed ID: 32798559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell insights: pioneering an integrated atlas of chromatin accessibility and transcriptomic landscapes in diabetic cardiomyopathy.
    Su Q; Huang W; Huang Y; Dai R; Chang C; Li QY; Liu H; Li Z; Zhao Y; Wu Q; Pan DG
    Cardiovasc Diabetol; 2024 Apr; 23(1):139. PubMed ID: 38664790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor α.
    Liu F; Song R; Feng Y; Guo J; Chen Y; Zhang Y; Chen T; Wang Y; Huang Y; Li CY; Cao C; Zhang Y; Hu X; Xiao RP
    Circulation; 2015 Mar; 131(9):795-804. PubMed ID: 25637627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFβ1 and miR-29 pathways.
    Zhang Y; Wang JH; Zhang YY; Wang YZ; Wang J; Zhao Y; Jin XX; Xue GL; Li PH; Sun YL; Huang QH; Song XT; Zhang ZR; Gao X; Yang BF; Du ZM; Pan ZW
    Sci Rep; 2016 Mar; 6():23010. PubMed ID: 26972749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NLRC5 deficiency ameliorates cardiac fibrosis in diabetic cardiomyopathy by regulating EndMT through Smad2/3 signaling pathway.
    Wang B; Wu Y; Ge Z; Zhang X; Yan Y; Xie Y
    Biochem Biophys Res Commun; 2020 Jul; 528(3):545-553. PubMed ID: 32505342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.