These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 39043145)

  • 1. The sexual lability hypothesis for the origin of the land plant generation cycle.
    Renner SS; Sokoloff DD
    Curr Biol; 2024 Jul; 34(14):R697-R707. PubMed ID: 39043145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fundamental plant evolutionary problem: the origin of land-plant sporophyte; is a new hypothesis possible?
    Bennici A
    Riv Biol; 2005; 98(3):469-80. PubMed ID: 16440282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Major transitions in the evolution of early land plants: a bryological perspective.
    Ligrone R; Duckett JG; Renzaglia KS
    Ann Bot; 2012 Apr; 109(5):851-71. PubMed ID: 22356739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autonomous.
    Libertín M; Kvaček J; Bek J; Žárský V; Štorch P
    Nat Plants; 2018 May; 4(5):269-271. PubMed ID: 29725100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How was apical growth regulated in the ancestral land plant? Insights from the development of non-seed plants.
    Fouracre JP; Harrison CJ
    Plant Physiol; 2022 Aug; 190(1):100-112. PubMed ID: 35771646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bryophyte diversity and evolution: windows into the early evolution of land plants.
    Shaw AJ; Szövényi P; Shaw B
    Am J Bot; 2011 Mar; 98(3):352-69. PubMed ID: 21613131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic evidence for the evolution of shoot meristem function in sporophyte-dominant land plants through concerted selection of ancestral gametophytic and sporophytic genetic programs.
    Frank MH; Scanlon MJ
    Mol Biol Evol; 2015 Feb; 32(2):355-67. PubMed ID: 25371433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation-biased gene expression in a bryophyte model system.
    Szövényi P; Rensing SA; Lang D; Wray GA; Shaw AJ
    Mol Biol Evol; 2011 Jan; 28(1):803-12. PubMed ID: 20855429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changing expressions: a hypothesis for the origin of the vascular plant life cycle.
    Kenrick P
    Philos Trans R Soc Lond B Biol Sci; 2018 Feb; 373(1739):. PubMed ID: 29254970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants.
    Hetherington AJ; Dolan L
    Philos Trans R Soc Lond B Biol Sci; 2018 Feb; 373(1739):. PubMed ID: 29254968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of root hairs and rhizoids.
    Jones VA; Dolan L
    Ann Bot; 2012 Jul; 110(2):205-12. PubMed ID: 22730024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and genetics in the evolution of land plant body plans.
    Jill Harrison C
    Philos Trans R Soc Lond B Biol Sci; 2017 Feb; 372(1713):. PubMed ID: 27994131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic analyses of morphological evolution in the gametophyte and sporophyte generations of the moss order Hookeriales (Bryopsida).
    Pokorny L; Ho BC; Frahm JP; Quandt D; Shaw AJ
    Mol Phylogenet Evol; 2012 May; 63(2):351-64. PubMed ID: 22266481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution and co-option of developmental regulatory networks in early land plants.
    Bowman JL; Briginshaw LN; Florent SN
    Curr Top Dev Biol; 2019; 131():35-53. PubMed ID: 30612623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unicellular and multicellular developmental variations in algal zygotes produce sporophytes.
    Horinouchi Y; Togashi T
    Biol Lett; 2023 Oct; 19(10):20230313. PubMed ID: 37848052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of parental care in haploid-diploid plants.
    Bessho K; Sasaki A
    Proc Biol Sci; 2024 Feb; 291(2016):20232351. PubMed ID: 38351800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower devonian gametophytes: relation to the phylogeny of land plants.
    Remy W
    Science; 1982 Mar; 215(4540):1625-7. PubMed ID: 17788489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interploidal hybridization and mating patterns in the Sphagnum subsecundum complex.
    Ricca M; Szövényi P; Temsch EM; Johnson MG; Shaw AJ
    Mol Ecol; 2011 Aug; 20(15):3202-18. PubMed ID: 21722226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution and maintenance of haploid-diploid life cycles in natural populations: The case of the marine brown alga Ectocarpus.
    Couceiro L; Le Gac M; Hunsperger HM; Mauger S; Destombe C; Cock JM; Ahmed S; Coelho SM; Valero M; Peters AF
    Evolution; 2015 Jul; 69(7):1808-22. PubMed ID: 26096000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HAG1 and SWI3A/B control of male germ line development in P. patens suggests conservation of epigenetic reproductive control across land plants.
    Genau AC; Li Z; Renzaglia KS; Fernandez Pozo N; Nogué F; Haas FB; Wilhelmsson PKI; Ullrich KK; Schreiber M; Meyberg R; Grosche C; Rensing SA
    Plant Reprod; 2021 Jun; 34(2):149-173. PubMed ID: 33839924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.