These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 39043191)
1. Citrate metabolism controls the senescent microenvironment via the remodeling of pro-inflammatory enhancers. Etoh K; Araki H; Koga T; Hino Y; Kuribayashi K; Hino S; Nakao M Cell Rep; 2024 Aug; 43(8):114496. PubMed ID: 39043191 [TBL] [Abstract][Full Text] [Related]
2. Modulation of matrix metabolism by ATP-citrate lyase in articular chondrocytes. Chen LY; Lotz M; Terkeltaub R; Liu-Bryan R J Biol Chem; 2018 Aug; 293(31):12259-12270. PubMed ID: 29929979 [TBL] [Abstract][Full Text] [Related]
3. Mammalian SIRT6 Represses Invasive Cancer Cell Phenotypes through ATP Citrate Lyase (ACLY)-Dependent Histone Acetylation. Zheng W; Tasselli L; Li TM; Chua KF Genes (Basel); 2021 Sep; 12(9):. PubMed ID: 34573442 [TBL] [Abstract][Full Text] [Related]
4. ATP-citrate lyase regulates cellular senescence via an AMPK- and p53-dependent pathway. Lee JH; Jang H; Lee SM; Lee JE; Choi J; Kim TW; Cho EJ; Youn HD FEBS J; 2015 Jan; 282(2):361-71. PubMed ID: 25367309 [TBL] [Abstract][Full Text] [Related]
5. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch. Zhao S; Torres A; Henry RA; Trefely S; Wallace M; Lee JV; Carrer A; Sengupta A; Campbell SL; Kuo YM; Frey AJ; Meurs N; Viola JM; Blair IA; Weljie AM; Metallo CM; Snyder NW; Andrews AJ; Wellen KE Cell Rep; 2016 Oct; 17(4):1037-1052. PubMed ID: 27760311 [TBL] [Abstract][Full Text] [Related]
7. ACLY and ACSS2 link nutrient-dependent chromatin accessibility to CD8 T cell effector responses. Kaymak I; Watson MJ; Oswald BM; Ma S; Johnson BK; DeCamp LM; Mabvakure BM; Luda KM; Ma EH; Lau K; Fu Z; Muhire B; Kitchen-Goosen SM; Vander Ark A; Dahabieh MS; Samborska B; Vos M; Shen H; Fan ZP; Roddy TP; Kingsbury GA; Sousa CM; Krawczyk CM; Williams KS; Sheldon RD; Kaech SM; Roy DG; Jones RG J Exp Med; 2024 Sep; 221(9):. PubMed ID: 39150482 [TBL] [Abstract][Full Text] [Related]
8. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Zhao S; Jang C; Liu J; Uehara K; Gilbert M; Izzo L; Zeng X; Trefely S; Fernandez S; Carrer A; Miller KD; Schug ZT; Snyder NW; Gade TP; Titchenell PM; Rabinowitz JD; Wellen KE Nature; 2020 Mar; 579(7800):586-591. PubMed ID: 32214246 [TBL] [Abstract][Full Text] [Related]
9. Exploring the Role of ATP-Citrate Lyase in the Immune System. Dominguez M; Brüne B; Namgaladze D Front Immunol; 2021; 12():632526. PubMed ID: 33679780 [TBL] [Abstract][Full Text] [Related]
10. Polarization of Human Macrophages by Interleukin-4 Does Not Require ATP-Citrate Lyase. Namgaladze D; Zukunft S; Schnütgen F; Kurrle N; Fleming I; Fuhrmann D; Brüne B Front Immunol; 2018; 9():2858. PubMed ID: 30568658 [TBL] [Abstract][Full Text] [Related]
12. ATP citrate lyase: A central metabolic enzyme in cancer. Icard P; Wu Z; Fournel L; Coquerel A; Lincet H; Alifano M Cancer Lett; 2020 Feb; 471():125-134. PubMed ID: 31830561 [TBL] [Abstract][Full Text] [Related]
13. Molecular basis for acetyl-CoA production by ATP-citrate lyase. Wei X; Schultz K; Bazilevsky GA; Vogt A; Marmorstein R Nat Struct Mol Biol; 2020 Jan; 27(1):33-41. PubMed ID: 31873304 [TBL] [Abstract][Full Text] [Related]
14. Polyamine regulating protein antizyme binds to ATP citrate lyase to accelerate acetyl-CoA production in cancer cells. Tajima A; Murai N; Murakami Y; Iwamoto T; Migita T; Matsufuji S Biochem Biophys Res Commun; 2016 Mar; 471(4):646-51. PubMed ID: 26915799 [TBL] [Abstract][Full Text] [Related]
15. Paradoxical activation of transcription factor SREBP1c and de novo lipogenesis by hepatocyte-selective ATP-citrate lyase depletion in obese mice. Yenilmez B; Kelly M; Zhang GF; Wetoska N; Ilkayeva OR; Min K; Rowland L; DiMarzio C; He W; Raymond N; Lifshitz L; Pan M; Han X; Xie J; Friedline RH; Kim JK; Gao G; Herman MA; Newgard CB; Czech MP J Biol Chem; 2022 Oct; 298(10):102401. PubMed ID: 35988648 [TBL] [Abstract][Full Text] [Related]
16. ATP-citrate lyase multimerization is required for coenzyme-A substrate binding and catalysis. Bazilevsky GA; Affronti HC; Wei X; Campbell SL; Wellen KE; Marmorstein R J Biol Chem; 2019 May; 294(18):7259-7268. PubMed ID: 30877197 [TBL] [Abstract][Full Text] [Related]
18. Active post-transcriptional regulation and ACLY-mediated acetyl-CoA synthesis as a pivotal target of Shuang-Huang-Sheng-Bai formula for lung adenocarcinoma treatment. Liu D; Dong C; Wang F; Liu W; Jin X; Qi SL; Liu L; Jin Q; Wang S; Wu J; Wang C; Yang J; Deng H; Cai Y; Yang L; Qin J; Zhang C; Yang X; Wang MS; Yu G; Xue YW; Wang Z; Ge GB; Xu Z; Chen WL Phytomedicine; 2023 May; 113():154732. PubMed ID: 36933457 [TBL] [Abstract][Full Text] [Related]
19. Allosteric role of the citrate synthase homology domain of ATP citrate lyase. Wei X; Schultz K; Pepper HL; Megill E; Vogt A; Snyder NW; Marmorstein R Nat Commun; 2023 Apr; 14(1):2247. PubMed ID: 37076498 [TBL] [Abstract][Full Text] [Related]
20. Impact of ATP-citrate lyase catalytic activity and serine 455 phosphorylation on histone acetylation and inflammatory responses in human monocytic THP-1 cells. Dominguez M; Truemper V; Mota AC; Brüne B; Namgaladze D Front Immunol; 2022; 13():906127. PubMed ID: 36439127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]