These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39043279)

  • 1. Techno-economical valorization of sugarcane bagasse for efficiently producing optically pure D-(-)-lactate approaching the theoretical maximum yield in low-cost salt medium by metabolically engineered Klebsiella oxytoca.
    Gosalawit C; Kory S; Phosriran C; Jantama K
    Bioresour Technol; 2024 Sep; 407():131145. PubMed ID: 39043279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining metabolic engineering and evolutionary adaptation in Klebsiella oxytoca KMS004 to significantly improve optically pure D-(-)-lactic acid yield and specific productivity in low nutrient medium.
    In S; Khunnonkwao P; Wong N; Phosiran C; Jantama SS; Jantama K
    Appl Microbiol Biotechnol; 2020 Nov; 104(22):9565-9579. PubMed ID: 33009939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp.
    Patel MA; Ou MS; Ingram LO; Shanmugam KT
    Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioethanol from sugarcane bagasse: Focused on optimum of lignin content and reduction of enzyme addition.
    Yu N; Tan L; Sun ZY; Nishimura H; Takei S; Tang YQ; Kida K
    Waste Manag; 2018 Jun; 76():404-413. PubMed ID: 29625877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Klebsiella oxytoca M5a1 to produce optically pure D-lactate in mineral salts medium.
    Sangproo M; Polyiam P; Jantama SS; Kanchanatawee S; Jantama K
    Bioresour Technol; 2012 Sep; 119():191-8. PubMed ID: 22728200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced cellulosic ethanol production via fed-batch simultaneous saccharification and fermentation of sequential dilute acid-alkali pretreated sugarcane bagasse.
    Hemansi ; Saini JK
    Bioresour Technol; 2023 Mar; 372():128671. PubMed ID: 36702326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sustainable process for co-production of xylooligosaccharides and ethanol from alkali treated sugarcane bagasse: A strategy towards waste management.
    Patel A; Divecha J; Shah A
    Prep Biochem Biotechnol; 2023; 53(6):599-609. PubMed ID: 36129679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient open fermentative production of polymer-grade L-lactate from sugarcane bagasse hydrolysate by thermotolerant Bacillus sp. strain P38.
    Peng L; Xie N; Guo L; Wang L; Yu B; Ma Y
    PLoS One; 2014; 9(9):e107143. PubMed ID: 25192451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cost-effective simultaneous saccharification and fermentation of l-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17.
    Zhou J; Ouyang J; Xu Q; Zheng Z
    Bioresour Technol; 2016 Dec; 222():431-438. PubMed ID: 27750196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced cellulosic d-lactic acid production from sugarcane bagasse by pre-fermentation of water-soluble carbohydrates before acid pretreatment.
    Qiu Z; Han X; Fu A; Jiang Y; Zhang W; Jin C; Li D; Xia J; He J; Deng Y; Xu N; Liu X; He A; Gu H; Xu J
    Bioresour Technol; 2023 Jan; 368():128324. PubMed ID: 36400276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol production from sugarcane bagasse: Use of different fermentation strategies to enhance an environmental-friendly process.
    de Araujo Guilherme A; Dantas PVF; Padilha CEA; Dos Santos ES; de Macedo GR
    J Environ Manage; 2019 Mar; 234():44-51. PubMed ID: 30599329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkaline hydrogen peroxide pretreatment combined with bio-additives to boost high-solids enzymatic hydrolysis of sugarcane bagasse for succinic acid processing.
    Zhang J; Li K; Liu S; Huang S; Xu C
    Bioresour Technol; 2022 Feb; 345():126550. PubMed ID: 34910972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol from lignocellulosic wastes with utilization of recombinant bacteria.
    Katzen R; Fowler DE
    Appl Biochem Biotechnol; 1994; 45-46():697-707. PubMed ID: 8010771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic in situ saccharification of sugarcane bagasse pretreated with low loading of alkalic salts Na
    Jiang CX; He YC; Chong GG; Di JH; Tang YJ; Ma CL
    J Biotechnol; 2017 Oct; 259():73-82. PubMed ID: 28797630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of Paraclostridium CR4 from sugarcane bagasse and its evaluation in the bioconversion of lignocellulosic feedstock into hydrogen by monitoring cellulase gene expression.
    Silva Rabelo CAB; Okino CH; Sakamoto IK; Varesche MBA
    Sci Total Environ; 2020 May; 715():136868. PubMed ID: 32014768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of simultaneous and separate processes: saccharification and thermophilic L-lactate fermentation of catch crop and aquatic plant biomass.
    Akao S; Maeda K; Nakatani S; Hosoi Y; Nagare H; Maeda M; Fujiwara T
    Environ Technol; 2012; 33(13-15):1523-9. PubMed ID: 22988611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolically engineered Lactobacillus gasseri JCM 1131 as a novel producer of optically pure L- and D-lactate.
    Žunar B; Trontel A; Svetec Miklenić M; Prah JL; Štafa A; Marđetko N; Novak M; Šantek B; Svetec IK
    World J Microbiol Biotechnol; 2020 Jul; 36(8):111. PubMed ID: 32656603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic hydrolysis and simultaneous saccharification and fermentation of alkali/peracetic acid-pretreated sugarcane bagasse for ethanol and 2,3-butanediol production.
    Zhao X; Song Y; Liu D
    Enzyme Microb Technol; 2011 Sep; 49(4):413-9. PubMed ID: 22112569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biobutanol production from sugarcane bagasse by Clostridium beijerinckii strains.
    Narayanasamy S; Chan KL; Cai H; Abdul Razak AHB; Tay BK; Miao H
    Biotechnol Appl Biochem; 2020 Sep; 67(5):732-737. PubMed ID: 31758710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of l(+)-lactic acid from acid pretreated sugarcane bagasse using
    van der Pol EC; Eggink G; Weusthuis RA
    Biotechnol Biofuels; 2016; 9():248. PubMed ID: 27872661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.