These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 39043346)

  • 1. Sleep-wake behavior and responses to sleep deprivation and immune challenge of protein kinase RNA-activated knockout mice.
    Valencia-Sanchez S; Davis M; Martensen J; Hoeffer C; Link C; Opp MR
    Brain Behav Immun; 2024 Oct; 121():74-86. PubMed ID: 39043346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep-wake behavior and responses to sleep deprivation of mice lacking both interleukin-1 beta receptor 1 and tumor necrosis factor-alpha receptor 1.
    Baracchi F; Opp MR
    Brain Behav Immun; 2008 Aug; 22(6):982-93. PubMed ID: 18329246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diurnal variation of lipopolysaccharide-induced alterations in sleep and body temperature of interleukin-6-deficient mice.
    Morrow JD; Opp MR
    Brain Behav Immun; 2005 Jan; 19(1):40-51. PubMed ID: 15581737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sleep-wake behavior and responses of interleukin-6-deficient mice to sleep deprivation.
    Morrow JD; Opp MR
    Brain Behav Immun; 2005 Jan; 19(1):28-39. PubMed ID: 15581736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interleukin-1 receptor accessory proteins are required for normal homeostatic responses to sleep deprivation.
    Nguyen J; Gibbons CM; Dykstra-Aiello C; Ellingsen R; Koh KMS; Taishi P; Krueger JM
    J Appl Physiol (1985); 2019 Sep; 127(3):770-780. PubMed ID: 31295066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interleukin 37 expression in mice alters sleep responses to inflammatory agents and influenza virus infection.
    Davis CJ; Zielinski MR; Dunbrasky D; Taishi P; Dinarello CA; Krueger JM
    Neurobiol Sleep Circadian Rhythms; 2017 Jun; 3():1-9. PubMed ID: 28070566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoperiod alters duration and intensity of non-rapid eye movement sleep following immune challenge in Siberian hamsters (Phodopus sungorus).
    Ashley NT; Zhang N; Weil ZM; Magalang UJ; Nelson RJ
    Chronobiol Int; 2012 Jul; 29(6):683-92. PubMed ID: 22734569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep and immunomodulatory responses to systemic lipopolysaccharide in mice selectively expressing interleukin-1 receptor 1 on neurons or astrocytes.
    Ingiosi AM; Opp MR
    Glia; 2016 May; 64(5):780-91. PubMed ID: 26775112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.
    Cui SY; Li SJ; Cui XY; Zhang XQ; Yu B; Sheng ZF; Huang YL; Cao Q; Xu YP; Lin ZG; Yang G; Song JZ; Ding H; Wang ZJ; Zhang YH
    J Neurochem; 2016 Feb; 136(3):609-19. PubMed ID: 26558357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruptions of Sleep/Wake Patterns in the Stable Tubule Only Polypeptide (STOP) Null Mouse Model of Schizophrenia.
    Profitt MF; Deurveilher S; Robertson GS; Rusak B; Semba K
    Schizophr Bull; 2016 Sep; 42(5):1207-15. PubMed ID: 26940700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous and influenza virus-induced sleep are altered in TNF-alpha double-receptor deficient mice.
    Kapás L; Bohnet SG; Traynor TR; Majde JA; Szentirmai E; Magrath P; Taishi P; Krueger JM
    J Appl Physiol (1985); 2008 Oct; 105(4):1187-98. PubMed ID: 18687977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restoring the Molecular Clockwork within the Suprachiasmatic Hypothalamus of an Otherwise Clockless Mouse Enables Circadian Phasing and Stabilization of Sleep-Wake Cycles and Reverses Memory Deficits.
    Maywood ES; Chesham JE; Winsky-Sommerer R; Hastings MH
    J Neurosci; 2021 Oct; 41(41):8562-8576. PubMed ID: 34446572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estradiol and progesterone modulate spontaneous sleep patterns and recovery from sleep deprivation in ovariectomized rats.
    Deurveilher S; Rusak B; Semba K
    Sleep; 2009 Jul; 32(7):865-77. PubMed ID: 19639749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deficiency of corticotropin-releasing hormone type-2 receptor alters sleep responses to bacterial lipopolysaccharide in mice.
    Jakubcakova V; Flachskamm C; Deussing JM; Kimura M
    Brain Behav Immun; 2011 Nov; 25(8):1626-36. PubMed ID: 21704697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep and body temperature in TNFα knockout mice: The effects of sleep deprivation, β3-AR stimulation and exogenous TNFα.
    Szentirmai É; Kapás L
    Brain Behav Immun; 2019 Oct; 81():260-271. PubMed ID: 31220563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous sleep and homeostatic sleep regulation in ghrelin knockout mice.
    Szentirmai E; Kapás L; Sun Y; Smith RG; Krueger JM
    Am J Physiol Regul Integr Comp Physiol; 2007 Jul; 293(1):R510-7. PubMed ID: 17409264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The anterolateral projections of the medial basal hypothalamus affect sleep.
    Peterfi Z; Makara GB; Obál F; Krueger JM
    Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1228-38. PubMed ID: 19193940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The time course of sigma activity and slow-wave activity during NREMS in cortical and thalamic EEG of the cat during baseline and after 12 hours of wakefulness.
    Lancel M; van Riezen H; Glatt A
    Brain Res; 1992 Nov; 596(1-2):285-95. PubMed ID: 1467989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep-wake characterization of double MT₁/MT₂ receptor knockout mice and comparison with MT₁ and MT₂ receptor knockout mice.
    Comai S; Ochoa-Sanchez R; Gobbi G
    Behav Brain Res; 2013 Apr; 243():231-8. PubMed ID: 23333399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system.
    Villablanca JR
    J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.