These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 39043639)

  • 1. Single gene analysis in yeast suggests nonequilibrium regulatory dynamics for transcription.
    Shelansky R; Abrahamsson S; Brown CR; Doody M; Lenstra TL; Larson DR; Boeger H
    Nat Commun; 2024 Jul; 15(1):6226. PubMed ID: 39043639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activator-dependent recruitment of SWI/SNF and INO80 during INO1 activation.
    Ford J; Odeyale O; Shen CH
    Biochem Biophys Res Commun; 2008 Sep; 373(4):602-6. PubMed ID: 18593569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. INO1 induction requires chromatin remodelers Ino80p and Snf2p but not the histone acetylases.
    Konarzewska P; Esposito M; Shen CH
    Biochem Biophys Res Commun; 2012 Feb; 418(3):483-8. PubMed ID: 22281492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin repositioning activity and transcription machinery are both recruited by Ace1p in yeast CUP1 activation.
    Wimalarathna RN; Pan PY; Shen CH
    Biochem Biophys Res Commun; 2012 Jun; 422(4):658-63. PubMed ID: 22609398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ISWI and CHD chromatin remodelers bind promoters but act in gene bodies.
    Zentner GE; Tsukiyama T; Henikoff S
    PLoS Genet; 2013; 9(2):e1003317. PubMed ID: 23468649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair.
    Chai B; Huang J; Cairns BR; Laurent BC
    Genes Dev; 2005 Jul; 19(14):1656-61. PubMed ID: 16024655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule imaging of chromatin remodelers reveals role of ATPase in promoting fast kinetics of target search and dissociation from chromatin.
    Kim JM; Visanpattanasin P; Jou V; Liu S; Tang X; Zheng Q; Li KY; Snedeker J; Lavis LD; Lionnet T; Wu C
    Elife; 2021 Jul; 10():. PubMed ID: 34313223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulatory network shapes the genome structure of Saccharomyces cerevisiae.
    Li S; Heermann DW
    Nucleus; 2013; 4(3):216-28. PubMed ID: 23674068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General Regulatory Factors Control the Fidelity of Transcription by Restricting Non-coding and Ectopic Initiation.
    Challal D; Barucco M; Kubik S; Feuerbach F; Candelli T; Geoffroy H; Benaksas C; Shore D; Libri D
    Mol Cell; 2018 Dec; 72(6):955-969.e7. PubMed ID: 30576657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-throughput synthetic biology approach for studying combinatorial chromatin-based transcriptional regulation.
    Alcantar MA; English MA; Valeri JA; Collins JJ
    Mol Cell; 2024 Jun; 84(12):2382-2396.e9. PubMed ID: 38906116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ATP-dependent chromatin remodeling enzyme Fun30 represses transcription by sliding promoter-proximal nucleosomes.
    Byeon B; Wang W; Barski A; Ranallo RT; Bao K; Schones DE; Zhao K; Wu C; Wu WH
    J Biol Chem; 2013 Aug; 288(32):23182-93. PubMed ID: 23779104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A framework for modelling gene regulation which accommodates non-equilibrium mechanisms.
    Ahsendorf T; Wong F; Eils R; Gunawardena J
    BMC Biol; 2014 Dec; 12():102. PubMed ID: 25475875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of the transcription control mechanism.
    Mao C; Brown CR; Falkovskaia E; Dong S; Hrabeta-Robinson E; Wenger L; Boeger H
    Mol Syst Biol; 2010 Nov; 6():431. PubMed ID: 21081924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast 14-3-3 protein functions as a comodulator of transcription by inhibiting coactivator functions.
    Parua PK; Dombek KM; Young ET
    J Biol Chem; 2014 Dec; 289(51):35542-60. PubMed ID: 25355315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repression of Divergent Noncoding Transcription by a Sequence-Specific Transcription Factor.
    Wu ACK; Patel H; Chia M; Moretto F; Frith D; Snijders AP; van Werven FJ
    Mol Cell; 2018 Dec; 72(6):942-954.e7. PubMed ID: 30576656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin remodelling at promoters suppresses antisense transcription.
    Whitehouse I; Rando OJ; Delrow J; Tsukiyama T
    Nature; 2007 Dec; 450(7172):1031-5. PubMed ID: 18075583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opening windows to the genome.
    Whitehouse I; Tsukiyama T
    Cell; 2009 May; 137(3):400-2. PubMed ID: 19410536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin Remodeling Factors Isw2 and Ino80 Regulate Chromatin, Replication, and Copy Number of the
    Cutler S; Lee LJ; Tsukiyama T
    Genetics; 2018 Dec; 210(4):1543-1556. PubMed ID: 30355728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response.
    Shivaswamy S; Iyer VR
    Mol Cell Biol; 2008 Apr; 28(7):2221-34. PubMed ID: 18212068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.