These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 39043717)
61. Variations of Pore Structure and Methane Adsorption of Continental Deformed Shales from Small-Scale Anticline and Syncline: Two Cases Study of the Triassic Yanchang Formation, Ordos Basin and Jurassic Yaojie Formation, Minhe Basin. Yang S; Yang F; Lyu C; Li C; Chen G; Ma M; Xue L ACS Omega; 2022 Dec; 7(51):48224-48239. PubMed ID: 36591141 [TBL] [Abstract][Full Text] [Related]
62. Micro- and Mesopores Occurring in Transitional Shales: An Examination Based on Pore Radius and Origin. Han W; Wang Y; Li Y; Liu D; Wu X J Nanosci Nanotechnol; 2021 Jan; 21(1):296-309. PubMed ID: 33213631 [TBL] [Abstract][Full Text] [Related]
63. Full-Scale Pore Structure Characteristics and the Main Controlling Factors of Mesoproterozoic Xiamaling Shale in Zhangjiakou, Hebei, China. Xu L; Yang K; Wei H; Liu L; Li X; Chen L; Xu T; Wang X Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33670817 [TBL] [Abstract][Full Text] [Related]
64. Nanoscale pore structure and fractal characteristics of lacustrine shale: A case study of the Upper Cretaceous Qingshankou shales, Southern Songliao Basin, China. Ji C; Liu T; Chen Y; Wang Q; Sun P; Sun L; He T PLoS One; 2024; 19(10):e0309346. PubMed ID: 39423183 [TBL] [Abstract][Full Text] [Related]
65. Occurrence of moisture in deep gas-bearing shale matrix and its impacts on methane adsorption/desorption capability under favorable reservoir conditions. Zhang D; Cai X; Xu Y; Tang X; Su H RSC Adv; 2023 Oct; 13(42):29291-29307. PubMed ID: 37809022 [TBL] [Abstract][Full Text] [Related]
66. Fractal Characteristics of the Middle-Upper Ordovician Marine Shale Nano-Scale Porous Structure from the Ordos Basin, Northeast China. Liu L; Mo W; Wang M; Zhou N; Yan Y; Xu L; Li M; Zhang J; Lu S J Nanosci Nanotechnol; 2021 Jan; 21(1):274-283. PubMed ID: 33213629 [TBL] [Abstract][Full Text] [Related]
67. Micro/Nanopore Systems in Lacustrine Tight Oil Reservoirs, China. Li Q; Wu S; Zhai X; Pan S; Lin S J Nanosci Nanotechnol; 2021 Jan; 21(1):599-607. PubMed ID: 33213659 [TBL] [Abstract][Full Text] [Related]
68. Characterization of Pore Structure and Fluid Mobility of Shale Reservoirs. Zhang G; Zhou Z; Cui C; Zhang J; Wang J ACS Omega; 2024 Sep; 9(36):37724-37736. PubMed ID: 39281915 [TBL] [Abstract][Full Text] [Related]
69. Carbon Dioxide (CO₂) Adsorption Behaviour and Its Relationship with Nano-Structure in an Organic-Rich Shale: A Case Study of the Longmaxi Shale in Southeast Chongqing. Wang M; Xie W; Dai X; Huang K J Nanosci Nanotechnol; 2021 Jan; 21(1):362-370. PubMed ID: 33213636 [TBL] [Abstract][Full Text] [Related]
70. High-Temperature-Induced Pore System Evolution of Immature Shale with Different Total Organic Carbon Contents. Zhuoke L; Lin T; Liu X; Ma S; Li X; Yang F; He B; Liu J; Zhang Y; Xie L ACS Omega; 2023 Apr; 8(14):12773-12786. PubMed ID: 37065028 [TBL] [Abstract][Full Text] [Related]
71. Adsorption/desorption characteristics of methane on moist shale under high temperature and pressure: an experimental and molecular simulation study. Feng P; Gao Y; Zhao K; Bai Y; Wang H; Chu H; Zhu X Environ Technol; 2024 Sep; ():1-14. PubMed ID: 39250824 [TBL] [Abstract][Full Text] [Related]
72. Geochemical and Geological Characteristics of the Upper Ordovician-Lower Silurian Shales in the Upper Yangtze Basin, South China: Implication for the Shale Gas Exploration. Sun YY; Yan JF; Men YP; Yu Q; Liu W; Chen XW; Kang JW; Zhang HQ; Shen Y; Liu J ACS Omega; 2020 May; 5(18):10228-10239. PubMed ID: 32426579 [TBL] [Abstract][Full Text] [Related]
73. The permeability of shale exposed to supercritical carbon dioxide. Wu D; Zhai W; Liu X; Xiao X; Xu J; Jia N; Miao F Sci Rep; 2023 Apr; 13(1):6734. PubMed ID: 37185792 [TBL] [Abstract][Full Text] [Related]
74. The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation. Li W; Wang C; Shi Z; Wei Y; Zhou H; Deng K PLoS One; 2016; 11(3):e0151631. PubMed ID: 26992168 [TBL] [Abstract][Full Text] [Related]
75. Nanopore Structure Distribution of the Upper Paleozoic Tight Sandstones and Its Controls on Gas Production Performance in the Shenfu Area, Northeastern Ordos Basin, China. Wu P; Wu J; Xu W; Deng J; Ju Y J Nanosci Nanotechnol; 2021 Jan; 21(1):98-107. PubMed ID: 33213616 [TBL] [Abstract][Full Text] [Related]
76. Nano/Micro Pore Structure and Fractal Characteristics of Baliancheng Coalfield in Hunchun Basin. Wang Y; Mao C J Nanosci Nanotechnol; 2021 Jan; 21(1):682-692. PubMed ID: 33213668 [TBL] [Abstract][Full Text] [Related]
77. Study on Pore Structure and Fractal Characterization during Thermal Evolution of Oil Shale Experiments. Liu G; Liu R; Du J; Zhang K; Yu J; Liu Q; He X ACS Omega; 2022 Apr; 7(15):12922-12936. PubMed ID: 35474800 [TBL] [Abstract][Full Text] [Related]
78. Characteristics of Micro/Nano Pores and Hydrocarbon Accumulation in a Continental Shale Oil Reservoir-A Case Study of the Lucaogou Formation in the Jimsar Sag, Junggar Basin, Northwest China. Jin J; Yang Z; Chen X; Li L; Yang H; Ju Y; Qiao P; Sun Y J Nanosci Nanotechnol; 2021 Jan; 21(1):262-273. PubMed ID: 33213628 [TBL] [Abstract][Full Text] [Related]
79. Effects of rock mineralogy and pore structure on stress-dependent permeability of shale samples. Al Ismail MI; Zoback MD Philos Trans A Math Phys Eng Sci; 2016 Oct; 374(2078):. PubMed ID: 27597792 [TBL] [Abstract][Full Text] [Related]
80. Impact of de-ionized water on changes in porosity and permeability of shales mineralogy due to clay-swelling. Zhang D; Meegoda JN; da Silva BMG; Hu L Sci Rep; 2021 Oct; 11(1):20049. PubMed ID: 34625625 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]