These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 39043725)

  • 1. Evaluating computational efforts and physiological resolution of mathematical models of cardiac tissue.
    Jæger KH; Trotter JD; Cai X; Arevalo H; Tveito A
    Sci Rep; 2024 Jul; 14(1):16954. PubMed ID: 39043725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representation of Multiple Cellular Phenotypes Within Tissue-Level Simulations of Cardiac Electrophysiology.
    Bowler LA; Gavaghan DJ; Mirams GR; Whiteley JP
    Bull Math Biol; 2019 Jan; 81(1):7-38. PubMed ID: 30291590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Millimeters to Micrometers; Re-introducing Myocytes in Models of Cardiac Electrophysiology.
    Jæger KH; Edwards AG; Giles WR; Tveito A
    Front Physiol; 2021; 12():763584. PubMed ID: 34777021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monodomain shear wave propagation and bidomain shear wave dispersion in an elastic model of cardiac tissue.
    Puwal S; Roth BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):024701. PubMed ID: 23496642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The simplified Kirchhoff network model (SKNM): a cell-based reaction-diffusion model of excitable tissue.
    Jæger KH; Tveito A
    Sci Rep; 2023 Sep; 13(1):16434. PubMed ID: 37777588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bidomain ECG simulations using an augmented monodomain model for the cardiac source.
    Bishop MJ; Plank G
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21536529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation dynamics in anisotropic cardiac tissue via decoupling.
    Clements JC; Nenonen J; Li PK; Horácek BM
    Ann Biomed Eng; 2004 Jul; 32(7):984-90. PubMed ID: 15298436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational cardiac electrophysiology: implementing mathematical models of cardiomyocytes to simulate action potentials of the heart.
    Bell MM; Cherry EM
    Methods Mol Biol; 2015; 1299():65-74. PubMed ID: 25836575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac propagation simulation.
    Pollard AE; Hooke N; Henriquez CS
    Crit Rev Biomed Eng; 1992; 20(3-4):171-210. PubMed ID: 1478091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating Cardiac Electrophysiology Using Unstructured All-Hexahedra Spectral Elements.
    Cuccuru G; Fotia G; Maggio F; Southern J
    Biomed Res Int; 2015; 2015():473279. PubMed ID: 26583112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Models of cardiac tissue electrophysiology: progress, challenges and open questions.
    Clayton RH; Bernus O; Cherry EM; Dierckx H; Fenton FH; Mirabella L; Panfilov AV; Sachse FB; Seemann G; Zhang H
    Prog Biophys Mol Biol; 2011 Jan; 104(1-3):22-48. PubMed ID: 20553746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-scale approaches for the simulation of cardiac electrophysiology: I - Sub-cellular and stochastic calcium dynamics from cell to organ.
    Colman MA; Holmes M; Whittaker DG; Jayasinghe I; Benson AP
    Methods; 2021 Jan; 185():49-59. PubMed ID: 32126258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deriving the Bidomain Model of Cardiac Electrophysiology From a Cell-Based Model; Properties and Comparisons.
    Jæger KH; Tveito A
    Front Physiol; 2021; 12():811029. PubMed ID: 35069265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Computer simulations of electrical activity of the heart].
    Aliev RR
    Usp Fiziol Nauk; 2010; 41(3):44-63. PubMed ID: 20865937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the computational complexity of the bidomain and the monodomain models of electrophysiology.
    Sundnes J; Nielsen BF; Mardal KA; Cai X; Lines GT; Tveito A
    Ann Biomed Eng; 2006 Jul; 34(7):1088-97. PubMed ID: 16773461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling the effect of gap junctions on tissue-level cardiac electrophysiology.
    Bruce D; Pathmanathan P; Whiteley JP
    Bull Math Biol; 2014 Feb; 76(2):431-54. PubMed ID: 24338526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regression analysis for constraining free parameters in electrophysiological models of cardiac cells.
    Sarkar AX; Sobie EA
    PLoS Comput Biol; 2010 Sep; 6(9):e1000914. PubMed ID: 20824123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart.
    Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of transmural electrical heterogeneities and electrotonic interactions on the dispersion of cardiac repolarization and action potential duration: A simulation study.
    Colli Franzone P; Pavarino LF; Taccardi B
    Math Biosci; 2006 Nov; 204(1):132-65. PubMed ID: 16904130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating histology into a 3D microscopic computer model of myocardium to study propagation at a cellular level.
    Stinstra J; MacLeod R; Henriquez C
    Ann Biomed Eng; 2010 Apr; 38(4):1399-414. PubMed ID: 20049638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.