These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 39043738)

  • 21. Recent Advances in Computational Methods for Identifying Anticancer Peptides.
    Feng P; Wang Z
    Curr Drug Targets; 2019; 20(5):481-487. PubMed ID: 30068270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accelerating the Discovery of Anticancer Peptides through Deep Forest Architecture with Deep Graphical Representation.
    Yao L; Li W; Zhang Y; Deng J; Pang Y; Huang Y; Chung CR; Yu J; Chiang YC; Lee TY
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extended dipeptide composition framework for accurate identification of anticancer peptides.
    Ullah F; Salam A; Nadeem M; Amin F; AlSalman H; Abrar M; Alfakih T
    Sci Rep; 2024 Jul; 14(1):17381. PubMed ID: 39075193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peptide-Based Drug Predictions for Cancer Therapy Using Deep Learning.
    Sun YY; Lin TT; Cheng WC; Lu IH; Lin CY; Chen SH
    Pharmaceuticals (Basel); 2022 Mar; 15(4):. PubMed ID: 35455418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MA-PEP: A novel anticancer peptide prediction framework with multimodal feature fusion based on attention mechanism.
    Liang X; Zhao H; Wang J
    Protein Sci; 2024 Apr; 33(4):e4966. PubMed ID: 38532681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep-WET: a deep learning-based approach for predicting DNA-binding proteins using word embedding techniques with weighted features.
    Mahmud SMH; Goh KOM; Hosen MF; Nandi D; Shoombuatong W
    Sci Rep; 2024 Feb; 14(1):2961. PubMed ID: 38316843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MLACP: machine-learning-based prediction of anticancer peptides.
    Manavalan B; Basith S; Shin TH; Choi S; Kim MO; Lee G
    Oncotarget; 2017 Sep; 8(44):77121-77136. PubMed ID: 29100375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of subtypes of anticancer peptides based on sequential features and physicochemical properties.
    Huang KY; Tseng YJ; Kao HJ; Chen CH; Yang HH; Weng SL
    Sci Rep; 2021 Jun; 11(1):13594. PubMed ID: 34193950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anticancer peptides prediction with deep representation learning features.
    Lv Z; Cui F; Zou Q; Zhang L; Xu L
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33529337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides.
    Rao B; Zhou C; Zhang G; Su R; Wei L
    Brief Bioinform; 2020 Sep; 21(5):1846-1855. PubMed ID: 31729528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ACP-ADA: A Boosting Method with Data Augmentation for Improved Prediction of Anticancer Peptides.
    Bhattarai S; Kim KS; Tayara H; Chong KT
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ME-ACP: Multi-view neural networks with ensemble model for identification of anticancer peptides.
    Feng G; Yao H; Li C; Liu R; Huang R; Fan X; Ge R; Miao Q
    Comput Biol Med; 2022 Jun; 145():105459. PubMed ID: 35358753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. StackedEnC-AOP: prediction of antioxidant proteins using transform evolutionary and sequential features based multi-scale vector with stacked ensemble learning.
    Rukh G; Akbar S; Rehman G; Alarfaj FK; Zou Q
    BMC Bioinformatics; 2024 Aug; 25(1):256. PubMed ID: 39098908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ANNprob-ACPs: A novel anticancer peptide identifier based on probabilistic feature fusion approach.
    Karim T; Shaon MSH; Sultan MF; Hasan MZ; Kafy AA
    Comput Biol Med; 2024 Feb; 169():107915. PubMed ID: 38171261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ACP_MS: prediction of anticancer peptides based on feature extraction.
    Zhou C; Peng D; Liao B; Jia R; Wu F
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36326080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ACPScanner: Prediction of Anticancer Peptides by Integrated Machine Learning Methodologies.
    Zhong G; Deng L
    J Chem Inf Model; 2024 Feb; 64(3):1092-1104. PubMed ID: 38277774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. iAFPs-Mv-BiTCN: Predicting antifungal peptides using self-attention transformer embedding and transform evolutionary based multi-view features with bidirectional temporal convolutional networks.
    Akbar S; Zou Q; Raza A; Alarfaj FK
    Artif Intell Med; 2024 May; 151():102860. PubMed ID: 38552379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. To Assist Oncologists: An Efficient Machine Learning-Based Approach for Anti-Cancer Peptides Classification.
    Alsanea M; Dukyil AS; Afnan ; Riaz B; Alebeisat F; Islam M; Habib S
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NEPTUNE: A novel computational approach for accurate and large-scale identification of tumor homing peptides.
    Charoenkwan P; Schaduangrat N; Lio' P; Moni MA; Manavalan B; Shoombuatong W
    Comput Biol Med; 2022 Sep; 148():105700. PubMed ID: 35715261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. UMPred-FRL: A New Approach for Accurate Prediction of Umami Peptides Using Feature Representation Learning.
    Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Manavalan B; Shoombuatong W
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.