These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 39043738)

  • 41. DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion.
    Cao R; Wang M; Bin Y; Zheng C
    PeerJ; 2021; 9():e11906. PubMed ID: 34414035
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ACPNet: A Deep Learning Network to Identify Anticancer Peptides by Hybrid Sequence Information.
    Sun M; Yang S; Hu X; Zhou Y
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268644
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MDTL-ACP: Anticancer Peptides Prediction Based on Multi-Domain Transfer Learning.
    Cao J; Zhou W; Yu Q; Ji J; Zhang J; He S; Zhu Z
    IEEE J Biomed Health Inform; 2023 Dec; PP():. PubMed ID: 38147420
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DPI_CDF: druggable protein identifier using cascade deep forest.
    Arif M; Fang G; Ghulam A; Musleh S; Alam T
    BMC Bioinformatics; 2024 Apr; 25(1):145. PubMed ID: 38580921
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ACP-ESM2: The prediction of anticancer peptides based on pre-trained classifier.
    Song H; Lin X; Zhang H; Yin H
    Comput Biol Chem; 2024 Jun; 110():108091. PubMed ID: 38735271
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder.
    Khan ZU; Pi D
    Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent Progress in Machine Learning-based Prediction of Peptide Activity for Drug Discovery.
    Wu Q; Ke H; Li D; Wang Q; Fang J; Zhou J
    Curr Top Med Chem; 2019; 19(1):4-16. PubMed ID: 30674262
    [TBL] [Abstract][Full Text] [Related]  

  • 48. AntiCP 2.0: an updated model for predicting anticancer peptides.
    Agrawal P; Bhagat D; Mahalwal M; Sharma N; Raghava GPS
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32770192
    [TBL] [Abstract][Full Text] [Related]  

  • 49. iACP-GE: accurate identification of anticancer peptides by using gradient boosting decision tree and extra tree.
    Liang Y; Ma X
    SAR QSAR Environ Res; 2023 Jan; 34(1):1-19. PubMed ID: 36562289
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ACP-BC: A Model for Accurate Identification of Anticancer Peptides Based on Fusion Features of Bidirectional Long Short-Term Memory and Chemically Derived Information.
    Sun M; Hu H; Pang W; Zhou Y
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37895128
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In Silico Design of Anticancer Peptides.
    Kumar S; Li H
    Methods Mol Biol; 2017; 1647():245-254. PubMed ID: 28809008
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced Protein Structural Class Prediction Using Effective Feature Modeling and Ensemble of Classifiers.
    Bankapur S; Patil N
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2409-2419. PubMed ID: 32149653
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MLACP 2.0: An updated machine learning tool for anticancer peptide prediction.
    Thi Phan L; Woo Park H; Pitti T; Madhavan T; Jeon YJ; Manavalan B
    Comput Struct Biotechnol J; 2022; 20():4473-4480. PubMed ID: 36051870
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Augmented Sample Selection Framework for Prediction of Anticancer Peptides.
    Tao H; Shan S; Fu H; Zhu C; Liu B
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764455
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ACPPfel: Explainable deep ensemble learning for anticancer peptides prediction based on feature optimization.
    Liu M; Wu T; Li X; Zhu Y; Chen S; Huang J; Zhou F; Liu H
    Front Genet; 2024; 15():1352504. PubMed ID: 38487252
    [No Abstract]   [Full Text] [Related]  

  • 56. CACPP: A Contrastive Learning-Based Siamese Network to Identify Anticancer Peptides Based on Sequence Only.
    Yang X; Jin J; Wang R; Li Z; Wang Y; Wei L
    J Chem Inf Model; 2024 Apr; 64(7):2807-2816. PubMed ID: 37252890
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ACP-DL: A Deep Learning Long Short-Term Memory Model to Predict Anticancer Peptides Using High-Efficiency Feature Representation.
    Yi HC; You ZH; Zhou X; Cheng L; Li X; Jiang TH; Chen ZH
    Mol Ther Nucleic Acids; 2019 Sep; 17():1-9. PubMed ID: 31173946
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31731751
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides.
    Wei L; Zhou C; Chen H; Song J; Su R
    Bioinformatics; 2018 Dec; 34(23):4007-4016. PubMed ID: 29868903
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of Anti-cancer Peptides Based on Multi-classifier System.
    Zhong W; Zhong B; Zhang H; Chen Z; Chen Y
    Comb Chem High Throughput Screen; 2019; 22(10):694-704. PubMed ID: 31793417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.