These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 39043768)

  • 1. Target control of linear directed networks based on the path cover problem.
    Someya W; Akutsu T; Nacher JC
    Sci Rep; 2024 Jul; 14(1):16881. PubMed ID: 39043768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification.
    Guo WF; Zhang SW; Shi QQ; Zhang CM; Zeng T; Chen L
    BMC Genomics; 2018 Jan; 19(Suppl 1):924. PubMed ID: 29363426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Caenorhabditis elegans to the human connectome: a specific modular organization increases metabolic, functional and developmental efficiency.
    Kim JS; Kaiser M
    Philos Trans R Soc Lond B Biol Sci; 2014 Oct; 369(1653):. PubMed ID: 25180307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target controllability with minimal mediators in complex biological networks.
    Ebrahimi A; Nowzari-Dalini A; Jalili M; Masoudi-Nejad A
    Genomics; 2020 Nov; 112(6):4938-4944. PubMed ID: 32905831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing self-similar and fractal properties of the C. elegans neural network.
    Reese TM; Brzoska A; Yott DT; Kelleher DJ
    PLoS One; 2012; 7(10):e40483. PubMed ID: 23071485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rich club of the C. elegans neuronal connectome.
    Towlson EK; Vértes PE; Ahnert SE; Schafer WR; Bullmore ET
    J Neurosci; 2013 Apr; 33(15):6380-7. PubMed ID: 23575836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic blockmodeling of the modules and core of the Caenorhabditis elegans connectome.
    Pavlovic DM; Vértes PE; Bullmore ET; Schafer WR; Nichols TE
    PLoS One; 2014; 9(7):e97584. PubMed ID: 24988196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target control of complex networks.
    Gao J; Liu YY; D'Souza RM; Barabási AL
    Nat Commun; 2014 Nov; 5():5415. PubMed ID: 25388503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast deep neural correspondence for tracking and identifying neurons in
    Yu X; Creamer MS; Randi F; Sharma AK; Linderman SW; Leifer AM
    Elife; 2021 Jul; 10():. PubMed ID: 34259623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring criticality in control of complex biological networks.
    Someya W; Akutsu T; Schwartz JM; Nacher JC
    NPJ Syst Biol Appl; 2024 Jan; 10(1):9. PubMed ID: 38245555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hierarchy index for networks in the brain reveals a complex entangled organizational structure.
    Pathak A; Menon SN; Sinha S
    Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2314291121. PubMed ID: 38923990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target Controllability of Two-Layer Multiplex Networks Based on Network Flow Theory.
    Song K; Li G; Chen X; Deng L; Xiao G; Zeng F; Pei J
    IEEE Trans Cybern; 2021 May; 51(5):2699-2711. PubMed ID: 30990210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connecting a connectome to behavior: an ensemble of neuroanatomical models of C. elegans klinotaxis.
    Izquierdo EJ; Beer RD
    PLoS Comput Biol; 2013; 9(2):e1002890. PubMed ID: 23408877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical controllability analysis of directed biological networks using efficient graph reduction.
    Ishitsuka M; Akutsu T; Nacher JC
    Sci Rep; 2017 Oct; 7(1):14361. PubMed ID: 29084972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Path matching and graph matching in biological networks.
    Yang Q; Sze SH
    J Comput Biol; 2007; 14(1):56-67. PubMed ID: 17381346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Irrelevance of linear controllability to nonlinear dynamical networks.
    Jiang J; Lai YC
    Nat Commun; 2019 Sep; 10(1):3961. PubMed ID: 31481693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic synchronization of dynamics on the human connectome.
    Pang JC; Gollo LL; Roberts JA
    Neuroimage; 2021 Apr; 229():117738. PubMed ID: 33454400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Intrinsic Similarity of Topological Structure in Biological Neural Networks.
    Zhao H; Shao C; Shi Z; He S; Gong Z
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3292-3305. PubMed ID: 37224366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The C. elegans Connectome Consists of Homogenous Circuits with Defined Functional Roles.
    Azulay A; Itskovits E; Zaslaver A
    PLoS Comput Biol; 2016 Sep; 12(9):e1005021. PubMed ID: 27606684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncovering and classifying the role of driven nodes in control of complex networks.
    Shinzawa Y; Akutsu T; Nacher JC
    Sci Rep; 2021 May; 11(1):9627. PubMed ID: 33953235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.