These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 39043868)
1. Mitigating the influence of multivalent ions on power density performance in a single-membrane capacitive reverse electrodialysis cell. Wu N; Levant M; Brahmi Y; Tregouet C; Colin A Sci Rep; 2024 Jul; 14(1):16984. PubMed ID: 39043868 [TBL] [Abstract][Full Text] [Related]
2. Concepts and Misconceptions Concerning the Influence of Divalent Ions on the Performance of Reverse Electrodialysis Using Natural Waters. Veerman J Membranes (Basel); 2023 Jan; 13(1):. PubMed ID: 36676877 [TBL] [Abstract][Full Text] [Related]
3. Resistance of Ion Exchange Membranes in Aqueous Mixtures of Monovalent and Divalent Ions and the Effect on Reverse Electrodialysis. Veerman J; Gómez-Coma L; Ortiz A; Ortiz I Membranes (Basel); 2023 Mar; 13(3):. PubMed ID: 36984709 [TBL] [Abstract][Full Text] [Related]
4. Design of Monovalent Ion Selective Membranes for Reducing the Impacts of Multivalent Ions in Reverse Electrodialysis. Besha AT; Tsehaye MT; Aili D; Zhang W; Tufa RA Membranes (Basel); 2019 Dec; 10(1):. PubMed ID: 31906203 [TBL] [Abstract][Full Text] [Related]
5. Effect of Co-Existing Ions on Salinity Gradient Power Generation by Reverse Electrodialysis Using Different Ion Exchange Membrane Pairs. Kaya TZ; Altıok E; Güler E; Kabay N Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557147 [TBL] [Abstract][Full Text] [Related]
6. Effect of Divalent Cations on RED Performance and Cation Exchange Membrane Selection to Enhance Power Densities. Rijnaarts T; Huerta E; van Baak W; Nijmeijer K Environ Sci Technol; 2017 Nov; 51(21):13028-13035. PubMed ID: 28950057 [TBL] [Abstract][Full Text] [Related]
7. A Strategy for Power Density Amelioration of Capacitive Reverse Electrodialysis Systems with a Single Membrane. Wu N; Brahmi Y; Colin A Environ Sci Technol; 2023 Oct; 57(40):14973-14982. PubMed ID: 37766509 [TBL] [Abstract][Full Text] [Related]
8. Divalent Cation Removal by Donnan Dialysis for Improved Reverse Electrodialysis. Rijnaarts T; Shenkute NT; Wood JA; de Vos WM; Nijmeijer K ACS Sustain Chem Eng; 2018 May; 6(5):7035-7041. PubMed ID: 29755894 [TBL] [Abstract][Full Text] [Related]
9. Generation of energy from salinity gradients using capacitive reverse electro dialysis: a review. Ramasamy G; Rajkumar PK; Narayanan M Environ Sci Pollut Res Int; 2021 Dec; 28(45):63672-63681. PubMed ID: 33400126 [TBL] [Abstract][Full Text] [Related]
10. Power Generation Performance of a Pilot-Scale Reverse Electrodialysis Using Monovalent Selective Ion-Exchange Membranes. Mehdizadeh S; Kakihana Y; Abo T; Yuan Q; Higa M Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33401447 [TBL] [Abstract][Full Text] [Related]
11. Renewable Power Generation by Reverse Electrodialysis Using an Ion Exchange Membrane. Chanda S; Tsai PA Membranes (Basel); 2021 Oct; 11(11):. PubMed ID: 34832059 [TBL] [Abstract][Full Text] [Related]
12. Coating of Nafion membranes with polyelectrolyte multilayers to achieve high monovalent/divalent cation electrodialysis selectivities. White N; Misovich M; Yaroshchuk A; Bruening ML ACS Appl Mater Interfaces; 2015 Apr; 7(12):6620-8. PubMed ID: 25738468 [TBL] [Abstract][Full Text] [Related]
13. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects. Yip NY; Brogioli D; Hamelers HV; Nijmeijer K Environ Sci Technol; 2016 Nov; 50(22):12072-12094. PubMed ID: 27718544 [TBL] [Abstract][Full Text] [Related]
14. Assessing the behavior of the feed-water constituents of a pilot-scale 1000-cell-pair reverse electrodialysis with seawater and municipal wastewater effluent. Nam JY; Hwang KS; Kim HC; Jeong H; Kim H; Jwa E; Yang S; Choi J; Kim CS; Han JH; Jeong N Water Res; 2019 Jan; 148():261-271. PubMed ID: 30388527 [TBL] [Abstract][Full Text] [Related]
15. Brackish groundwater desalination by constant current membrane capacitive deionization (MCDI): Results of a long-term field trial in Central Australia. Zhu Y; Miller C; Lian B; Wang Y; Fletcher J; Zhou H; He Z; Lyu S; Purser M; Juracich P; Sweeney D; Waite TD Water Res; 2024 May; 254():121413. PubMed ID: 38489850 [TBL] [Abstract][Full Text] [Related]
16. Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Van der Bruggen B; Koninckx A; Vandecasteele C Water Res; 2004 Mar; 38(5):1347-53. PubMed ID: 14975668 [TBL] [Abstract][Full Text] [Related]
17. Effect of Solution Composition on the Energy Production by Capacitive Mixing in Membrane-Electrode Assembly. Ahualli S; Fernández MM; Iglesias G; Jiménez ML; Liu F; Wagterveld M; Delgado AV J Phys Chem C Nanomater Interfaces; 2014 Jul; 118(29):15590-15599. PubMed ID: 25089164 [TBL] [Abstract][Full Text] [Related]
18. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis. Yip NY; Elimelech M Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687 [TBL] [Abstract][Full Text] [Related]
19. Development of an Integrated Salt Cartridge-Reverse Electrodialysis (Red) Device to Increase Electrolyte Concentrations to Biomedical Devices. Pakkaner E; Orton JL; Campbell CG; Hestekin JA; Hestekin CN Membranes (Basel); 2022 Oct; 12(10):. PubMed ID: 36295749 [TBL] [Abstract][Full Text] [Related]
20. Surface-Modified Pore-Filled Anion-Exchange Membranes for Efficient Energy Harvesting via Reverse Electrodialysis. Lee JH; Kim DH; Kang MS Membranes (Basel); 2023 Nov; 13(12):. PubMed ID: 38132899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]