These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 39044035)

  • 1. Using machine learning to combine genetic and environmental data for maize grain yield predictions across multi-environment trials.
    Fernandes IK; Vieira CC; Dias KOG; Fernandes SB
    Theor Appl Genet; 2024 Jul; 137(8):189. PubMed ID: 39044035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials.
    Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM
    Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids.
    Acosta-Pech R; Crossa J; de Los Campos G; Teyssèdre S; Claustres B; Pérez-Elizalde S; Pérez-Rodríguez P
    Theor Appl Genet; 2017 Jul; 130(7):1431-1440. PubMed ID: 28401254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of physiological genomic estimated breeding values (PGEBV) combining full hyperspectral and marker data across environments for grain yield under combined heat and drought stress in tropical maize (Zea mays L.).
    Trachsel S; Dhliwayo T; Gonzalez Perez L; Mendoza Lugo JA; Trachsel M
    PLoS One; 2019; 14(3):e0212200. PubMed ID: 30893307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenomic selection in wheat breeding: prediction of the genotype-by-environment interaction in multi-environment breeding trials.
    Robert P; Goudemand E; Auzanneau J; Oury FX; Rolland B; Heumez E; Bouchet S; Caillebotte A; Mary-Huard T; Le Gouis J; Rincent R
    Theor Appl Genet; 2022 Oct; 135(10):3337-3356. PubMed ID: 35939074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field-based high-throughput phenotyping enhances phenomic and genomic predictions for grain yield and plant height across years in maize.
    Adak A; DeSalvio AJ; Arik MA; Murray SC
    G3 (Bethesda); 2024 Jul; 14(7):. PubMed ID: 38776257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic prediction in multi-environment trials in maize using statistical and machine learning methods.
    Barreto CAV; das Graças Dias KO; de Sousa IC; Azevedo CF; Nascimento ACC; Guimarães LJM; Guimarães CT; Pastina MM; Nascimento M
    Sci Rep; 2024 Jan; 14(1):1062. PubMed ID: 38212638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment.
    Rogers AR; Dunne JC; Romay C; Bohn M; Buckler ES; Ciampitti IA; Edwards J; Ertl D; Flint-Garcia S; Gore MA; Graham C; Hirsch CN; Hood E; Hooker DC; Knoll J; Lee EC; Lorenz A; Lynch JP; McKay J; Moose SP; Murray SC; Nelson R; Rocheford T; Schnable JC; Schnable PS; Sekhon R; Singh M; Smith M; Springer N; Thelen K; Thomison P; Thompson A; Tuinstra M; Wallace J; Wisser RJ; Xu W; Gilmour AR; Kaeppler SM; De Leon N; Holland JB
    G3 (Bethesda); 2021 Feb; 11(2):. PubMed ID: 33585867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enviromic-based kernels may optimize resource allocation with multi-trait multi-environment genomic prediction for tropical Maize.
    Gevartosky R; Carvalho HF; Costa-Neto G; Montesinos-López OA; Crossa J; Fritsche-Neto R
    BMC Plant Biol; 2023 Jan; 23(1):10. PubMed ID: 36604618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dominance Effects and Functional Enrichments Improve Prediction of Agronomic Traits in Hybrid Maize.
    Ramstein GP; Larsson SJ; Cook JP; Edwards JW; Ersoz ES; Flint-Garcia S; Gardner CA; Holland JB; Lorenz AJ; McMullen MD; Millard MJ; Rocheford TR; Tuinstra MR; Bradbury PJ; Buckler ES; Romay MC
    Genetics; 2020 May; 215(1):215-230. PubMed ID: 32152047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environment-specific genomic prediction ability in maize using environmental covariates depends on environmental similarity to training data.
    Rogers AR; Holland JB
    G3 (Bethesda); 2022 Feb; 12(2):. PubMed ID: 35100364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic prediction and association mapping of maize grain yield in multi-environment trials based on reaction norm models.
    Tolley SA; Brito LF; Wang DR; Tuinstra MR
    Front Genet; 2023; 14():1221751. PubMed ID: 37719703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TrG2P: A transfer-learning-based tool integrating multi-trait data for accurate prediction of crop yield.
    Li J; Zhang D; Yang F; Zhang Q; Pan S; Zhao X; Zhang Q; Han Y; Yang J; Wang K; Zhao C
    Plant Commun; 2024 Jul; 5(7):100975. PubMed ID: 38751121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Maize Phenotypic Traits With Genomic and Environmental Predictors Using Gradient Boosting Frameworks.
    Westhues CC; Mahone GS; da Silva S; Thorwarth P; Schmidt M; Richter JC; Simianer H; Beissinger TM
    Front Plant Sci; 2021; 12():699589. PubMed ID: 34880880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction.
    Bandeira E Sousa M; Cuevas J; de Oliveira Couto EG; Pérez-Rodríguez P; Jarquín D; Fritsche-Neto R; Burgueño J; Crossa J
    G3 (Bethesda); 2017 Jun; 7(6):1995-2014. PubMed ID: 28455415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America.
    Lopez-Cruz M; Aguate FM; Washburn JD; de Leon N; Kaeppler SM; Lima DC; Tan R; Thompson A; De La Bretonne LW; de Los Campos G
    Nat Commun; 2023 Oct; 14(1):6904. PubMed ID: 37903778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic prediction of maize yield across European environmental conditions.
    Millet EJ; Kruijer W; Coupel-Ledru A; Alvarez Prado S; Cabrera-Bosquet L; Lacube S; Charcosset A; Welcker C; van Eeuwijk F; Tardieu F
    Nat Genet; 2019 Jun; 51(6):952-956. PubMed ID: 31110353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic assisted selection for enhancing line breeding: merging genomic and phenotypic selection in winter wheat breeding programs with preliminary yield trials.
    Michel S; Ametz C; Gungor H; Akgöl B; Epure D; Grausgruber H; Löschenberger F; Buerstmayr H
    Theor Appl Genet; 2017 Feb; 130(2):363-376. PubMed ID: 27826661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomes to Fields 2022 Maize genotype by Environment Prediction Competition.
    Lima DC; Washburn JD; Varela JI; Chen Q; Gage JL; Romay MC; Holland J; Ertl D; Lopez-Cruz M; Aguate FM; de Los Campos G; Kaeppler S; Beissinger T; Bohn M; Buckler E; Edwards J; Flint-Garcia S; Gore MA; Hirsch CN; Knoll JE; McKay J; Minyo R; Murray SC; Ortez OA; Schnable JC; Sekhon RS; Singh MP; Sparks EE; Thompson A; Tuinstra M; Wallace J; Weldekidan T; Xu W; de Leon N
    BMC Res Notes; 2023 Jul; 16(1):148. PubMed ID: 37461058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Trait Genomic Prediction of Yield-Related Traits in US Soft Wheat under Variable Water Regimes.
    Guo J; Khan J; Pradhan S; Shahi D; Khan N; Avci M; Mcbreen J; Harrison S; Brown-Guedira G; Murphy JP; Johnson J; Mergoum M; Esten Mason R; Ibrahim AMH; Sutton R; Griffey C; Babar MA
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33126620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.