These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 39044036)
1. Improving lung nodule segmentation in thoracic CT scans through the ensemble of 3D U-Net models. Rikhari H; Baidya Kayal E; Ganguly S; Sasi A; Sharma S; Antony A; Rangarajan K; Bakhshi S; Kandasamy D; Mehndiratta A Int J Comput Assist Radiol Surg; 2024 Oct; 19(10):2089-2099. PubMed ID: 39044036 [TBL] [Abstract][Full Text] [Related]
2. Fully automatic deep learning-based lung parenchyma segmentation and boundary correction in thoracic CT scans. Rikhari H; Baidya Kayal E; Ganguly S; Sasi A; Sharma S; Dheeksha DS; Saini M; Rangarajan K; Bakhshi S; Kandasamy D; Mehndiratta A Int J Comput Assist Radiol Surg; 2024 Feb; 19(2):261-272. PubMed ID: 37594684 [TBL] [Abstract][Full Text] [Related]
3. Hybrid U-Net-based deep learning model for volume segmentation of lung nodules in CT images. Wang Y; Zhou C; Chan HP; Hadjiiski LM; Chughtai A; Kazerooni EA Med Phys; 2022 Nov; 49(11):7287-7302. PubMed ID: 35717560 [TBL] [Abstract][Full Text] [Related]
4. Validation of a deep learning computer aided system for CT based lung nodule detection, classification, and growth rate estimation in a routine clinical population. Murchison JT; Ritchie G; Senyszak D; Nijwening JH; van Veenendaal G; Wakkie J; van Beek EJR PLoS One; 2022; 17(5):e0266799. PubMed ID: 35511758 [TBL] [Abstract][Full Text] [Related]
5. Automated pulmonary nodule detection in CT images using 3D deep squeeze-and-excitation networks. Gong L; Jiang S; Yang Z; Zhang G; Wang L Int J Comput Assist Radiol Surg; 2019 Nov; 14(11):1969-1979. PubMed ID: 31028657 [TBL] [Abstract][Full Text] [Related]
6. Development of a modified 3D region proposal network for lung nodule detection in computed tomography scans: a secondary analysis of lung nodule datasets. Lin CY; Guo SM; Lien JJ; Tsai TY; Liu YS; Lai CH; Hsu IL; Chang CC; Tseng YL Cancer Imaging; 2024 Mar; 24(1):40. PubMed ID: 38509635 [TBL] [Abstract][Full Text] [Related]
7. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Messay T; Hardie RC; Rogers SK Med Image Anal; 2010 Jun; 14(3):390-406. PubMed ID: 20346728 [TBL] [Abstract][Full Text] [Related]
8. Performance Analysis in Children of Traditional and Deep Learning CT Lung Nodule Computer-Aided Detection Systems Trained on Adults. Hardie RC; Trout AT; Dillman JR; Narayanan BN; Tanimoto AA AJR Am J Roentgenol; 2024 Feb; 222(2):e2330345. PubMed ID: 37991333 [No Abstract] [Full Text] [Related]
9. Classification of lung nodules in CT scans using three-dimensional deep convolutional neural networks with a checkpoint ensemble method. Jung H; Kim B; Lee I; Lee J; Kang J BMC Med Imaging; 2018 Dec; 18(1):48. PubMed ID: 30509191 [TBL] [Abstract][Full Text] [Related]
10. Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs. Gu Y; Lu X; Yang L; Zhang B; Yu D; Zhao Y; Gao L; Wu L; Zhou T Comput Biol Med; 2018 Dec; 103():220-231. PubMed ID: 30390571 [TBL] [Abstract][Full Text] [Related]
11. Effect of segmentation algorithms on the performance of computerized detection of lung nodules in CT. Guo W; Li Q Med Phys; 2014 Sep; 41(9):091906. PubMed ID: 25186393 [TBL] [Abstract][Full Text] [Related]
12. A radiomics approach for lung nodule detection in thoracic CT images based on the dynamic patterns of morphological variation. Lin FY; Chang YC; Huang HY; Li CC; Chen YC; Chen CM Eur Radiol; 2022 Jun; 32(6):3767-3777. PubMed ID: 35020016 [TBL] [Abstract][Full Text] [Related]
13. Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. Way TW; Hadjiiski LM; Sahiner B; Chan HP; Cascade PN; Kazerooni EA; Bogot N; Zhou C Med Phys; 2006 Jul; 33(7):2323-37. PubMed ID: 16898434 [TBL] [Abstract][Full Text] [Related]
14. Volumetric segmentation of ground glass nodule based on 3D attentional cascaded residual U-Net and conditional random field. Chen H; Liu J; Lu L; Wang T; Xu X; Chu A; Peng W; Gong J; Tang W; Gu Y Med Phys; 2022 Feb; 49(2):1097-1107. PubMed ID: 34951492 [TBL] [Abstract][Full Text] [Related]
15. Multistage segmentation model and SVM-ensemble for precise lung nodule detection. Naqi SM; Sharif M; Yasmin M Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):1083-1095. PubMed ID: 29492880 [TBL] [Abstract][Full Text] [Related]
16. Dual-branch feature fusion S3D V-Net network for lung nodules segmentation. Xu X; Du L; Yin D J Appl Clin Med Phys; 2024 Jun; 25(6):e14331. PubMed ID: 38478388 [TBL] [Abstract][Full Text] [Related]
17. S-Net: an S-shaped network for nodule detection in 3D CT images. Zhang J; Zou W; Hu N; Zhang B; Wang J Phys Med Biol; 2024 Apr; 69(7):. PubMed ID: 38382097 [No Abstract] [Full Text] [Related]
18. Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection. Zheng S; Guo J; Cui X; Veldhuis RNJ; Oudkerk M; van Ooijen PMA IEEE Trans Med Imaging; 2020 Mar; 39(3):797-805. PubMed ID: 31425026 [TBL] [Abstract][Full Text] [Related]
19. Quantitative nodule detection in low dose chest CT scans: new template modeling and evaluation for CAD system design. Farag AA; El-Baz A; Gimelfarb G; El-Ghar MA; Eldiasty T Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):720-8. PubMed ID: 16685910 [TBL] [Abstract][Full Text] [Related]
20. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning. Huang W; Xue Y; Wu Y PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]