These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 39044195)

  • 1. Outcome risk model development for heterogeneity of treatment effect analyses: a comparison of non-parametric machine learning methods and semi-parametric statistical methods.
    Xu E; Vanghelof J; Wang Y; Patel A; Furst J; Raicu DS; Neumann JT; Wolfe R; Gao CX; McNeil JJ; Shah RC; Tchoua R
    BMC Med Res Methodol; 2024 Jul; 24(1):158. PubMed ID: 39044195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of machine learning clustering algorithms for detecting heterogeneity of treatment effect in acute respiratory distress syndrome: A secondary analysis of three randomised controlled trials.
    Sinha P; Spicer A; Delucchi KL; McAuley DF; Calfee CS; Churpek MM
    EBioMedicine; 2021 Dec; 74():103697. PubMed ID: 34861492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preventing false discovery of heterogeneous treatment effect subgroups in randomized trials.
    Rigdon J; Baiocchi M; Basu S
    Trials; 2018 Jul; 19(1):382. PubMed ID: 30012181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benefit and harm of intensive blood pressure treatment: Derivation and validation of risk models using data from the SPRINT and ACCORD trials.
    Basu S; Sussman JB; Rigdon J; Steimle L; Denton BT; Hayward RA
    PLoS Med; 2017 Oct; 14(10):e1002410. PubMed ID: 29040268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneity of treatment effect by baseline risk of mortality in critically ill patients: re-analysis of three recent sepsis and ARDS randomised controlled trials.
    Santhakumaran S; Gordon A; Prevost AT; O'Kane C; McAuley DF; Shankar-Hari M
    Crit Care; 2019 May; 23(1):156. PubMed ID: 31053084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Risk and treatment effect heterogeneity: re-analysis of individual participant data from 32 large clinical trials.
    Kent DM; Nelson J; Dahabreh IJ; Rothwell PM; Altman DG; Hayward RA
    Int J Epidemiol; 2016 Dec; 45(6):2075-2088. PubMed ID: 27375287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous Treatment Effects of Therapeutic-Dose Heparin in Patients Hospitalized for COVID-19.
    Goligher EC; Lawler PR; Jensen TP; Talisa V; Berry LR; Lorenzi E; McVerry BJ; Chang CH; Leifer E; Bradbury C; Berger J; Hunt BJ; Castellucci LA; Kornblith LZ; Gordon AC; McArthur C; Webb S; Hochman J; Neal MD; Zarychanski R; Berry S; Angus DC;
    JAMA; 2023 Apr; 329(13):1066-1077. PubMed ID: 36942550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement.
    Kent DM; Paulus JK; van Klaveren D; D'Agostino R; Goodman S; Hayward R; Ioannidis JPA; Patrick-Lake B; Morton S; Pencina M; Raman G; Ross JS; Selker HP; Varadhan R; Vickers A; Wong JB; Steyerberg EW
    Ann Intern Med; 2020 Jan; 172(1):35-45. PubMed ID: 31711134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalizability of heterogeneous treatment effects based on causal forests applied to two randomized clinical trials of intensive glycemic control.
    Raghavan S; Josey K; Bahn G; Reda D; Basu S; Berkowitz SA; Emanuele N; Reaven P; Ghosh D
    Ann Epidemiol; 2022 Jan; 65():101-108. PubMed ID: 34280545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similar mortality risk in incident cognitive impairment and dementia: Evidence from the ASPirin in Reducing Events in the Elderly (ASPREE) trial.
    Lin X; Banaszak-Holl J; Xie J; Ward SA; Brodaty H; Storey E; Shah RC; Murray A; Ryan J; Orchard SG; Fitzgerald SM; McNeil JJ
    J Am Geriatr Soc; 2021 Dec; 69(12):3568-3575. PubMed ID: 34533211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients: longitudinal cohort study using cardiovascular disease as exemplar.
    Li Y; Sperrin M; Ashcroft DM; van Staa TP
    BMJ; 2020 Nov; 371():m3919. PubMed ID: 33148619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning in Aging: An Example of Developing Prediction Models for Serious Fall Injury in Older Adults.
    Speiser JL; Callahan KE; Houston DK; Fanning J; Gill TM; Guralnik JM; Newman AB; Pahor M; Rejeski WJ; Miller ME
    J Gerontol A Biol Sci Med Sci; 2021 Mar; 76(4):647-654. PubMed ID: 32498077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives.
    Brookes ST; Whitley E; Peters TJ; Mulheran PA; Egger M; Davey Smith G
    Health Technol Assess; 2001; 5(33):1-56. PubMed ID: 11701102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From concepts, theory, and evidence of heterogeneity of treatment effects to methodological approaches: a primer.
    Willke RJ; Zheng Z; Subedi P; Althin R; Mullins CD
    BMC Med Res Methodol; 2012 Dec; 12():185. PubMed ID: 23234603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lenvatinib plus pembrolizumab for untreated advanced renal cell carcinoma: a systematic review and cost-effectiveness analysis.
    Fleeman N; Houten R; Nevitt S; Mahon J; Beale S; Boland A; Greenhalgh J; Edwards K; Maden M; Bhattacharyya D; Chaplin M; McEntee J; Chow S; Waddell T
    Health Technol Assess; 2024 Aug; 28(49):1-190. PubMed ID: 39252678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes.
    Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S
    JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning approaches for prediction of early death among lung cancer patients with bone metastases using routine clinical characteristics: An analysis of 19,887 patients.
    Cui Y; Shi X; Wang S; Qin Y; Wang B; Che X; Lei M
    Front Public Health; 2022; 10():1019168. PubMed ID: 36276398
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.