These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 39044275)
21. Delayed ischaemic contracture onset by empagliflozin associates with NHE1 inhibition and is dependent on insulin in isolated mouse hearts. Uthman L; Nederlof R; Eerbeek O; Baartscheer A; Schumacher C; Buchholtz N; Hollmann MW; Coronel R; Weber NC; Zuurbier CJ Cardiovasc Res; 2019 Aug; 115(10):1533-1545. PubMed ID: 30649212 [TBL] [Abstract][Full Text] [Related]
22. Empagliflozin Significantly Prevents the Doxorubicin-induced Acute Cardiotoxicity via Non-antioxidant Pathways. Barış VÖ; Dinçsoy AB; Gedikli E; Zırh S; Müftüoğlu S; Erdem A Cardiovasc Toxicol; 2021 Sep; 21(9):747-758. PubMed ID: 34089496 [TBL] [Abstract][Full Text] [Related]
23. Effects of Secretome from Fat Tissues on Ion Currents of Cardiomyocyte Modulated by Sodium-Glucose Transporter 2 Inhibitor. Jhuo SJ; Liu IH; Tsai WC; Chou TW; Lin YH; Wu BN; Lee KT; Lai WT Molecules; 2020 Aug; 25(16):. PubMed ID: 32784369 [TBL] [Abstract][Full Text] [Related]
24. Empagliflozin alleviates obesity-related cardiac dysfunction via the activation of SIRT3-mediated autophagosome formation. Luo Y; Ye T; Tian H; Song H; Kan C; Han F; Hou N; Sun X; Zhang J Lipids Health Dis; 2024 Sep; 23(1):308. PubMed ID: 39334359 [TBL] [Abstract][Full Text] [Related]
25. Glucagon Receptor Antagonist for Heart Failure With Preserved Ejection Fraction. Gao C; Xiong Z; Liu Y; Wang M; Wang M; Liu T; Liu J; Ren S; Cao N; Yan H; Drucker DJ; Rau CD; Yokota T; Huang J; Wang Y Circ Res; 2024 Aug; 135(5):614-628. PubMed ID: 39011638 [TBL] [Abstract][Full Text] [Related]
26. Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics. Santos-Gallego CG; Requena-Ibanez JA; San Antonio R; Ishikawa K; Watanabe S; Picatoste B; Flores E; Garcia-Ropero A; Sanz J; Hajjar RJ; Fuster V; Badimon JJ J Am Coll Cardiol; 2019 Apr; 73(15):1931-1944. PubMed ID: 30999996 [TBL] [Abstract][Full Text] [Related]
27. Empagliflozin Preserves Skeletal Muscle Function in a HFpEF Rat Model. Winzer EB; Schauer A; Langner E; Augstein A; Goto K; Männel A; Barthel P; Jannasch A; Labeit S; Mangner N; Linke A; Adams V Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232292 [TBL] [Abstract][Full Text] [Related]
29. Empagliflozin ameliorates ventricular arrhythmias by inhibiting sympathetic remodeling via nerve growth factor/tyrosine kinase receptor A pathway inhibition. Jing Y; Ding Y; Fu H; Li T; Long T; Ye Q J Cardiovasc Med (Hagerstown); 2024 Sep; 25(9):664-673. PubMed ID: 38949125 [TBL] [Abstract][Full Text] [Related]
30. The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Lee HC; Shiou YL; Jhuo SJ; Chang CY; Liu PL; Jhuang WJ; Dai ZK; Chen WY; Chen YF; Lee AS Cardiovasc Diabetol; 2019 Apr; 18(1):45. PubMed ID: 30935417 [TBL] [Abstract][Full Text] [Related]
31. Empagliflozin reduces the senescence of cardiac stromal cells and improves cardiac function in a murine model of diabetes. Madonna R; Doria V; Minnucci I; Pucci A; Pierdomenico DS; De Caterina R J Cell Mol Med; 2020 Nov; 24(21):12331-12340. PubMed ID: 32940423 [TBL] [Abstract][Full Text] [Related]
33. Empagliflozin maintains capillarization and improves cardiac function in a murine model of left ventricular pressure overload. Nakao M; Shimizu I; Katsuumi G; Yoshida Y; Suda M; Hayashi Y; Ikegami R; Hsiao YT; Okuda S; Soga T; Minamino T Sci Rep; 2021 Sep; 11(1):18384. PubMed ID: 34526601 [TBL] [Abstract][Full Text] [Related]
35. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Habibi J; Aroor AR; Sowers JR; Jia G; Hayden MR; Garro M; Barron B; Mayoux E; Rector RS; Whaley-Connell A; DeMarco VG Cardiovasc Diabetol; 2017 Jan; 16(1):9. PubMed ID: 28086951 [TBL] [Abstract][Full Text] [Related]
36. Targeting Mitochondria-Inflammation Circuit by β-Hydroxybutyrate Mitigates HFpEF. Deng Y; Xie M; Li Q; Xu X; Ou W; Zhang Y; Xiao H; Yu H; Zheng Y; Liang Y; Jiang C; Chen G; Du D; Zheng W; Wang S; Gong M; Chen Y; Tian R; Li T Circ Res; 2021 Jan; 128(2):232-245. PubMed ID: 33176578 [TBL] [Abstract][Full Text] [Related]
37. The total xanthones extracted from Gentianella acuta alleviates HFpEF by activating the IRE1α/Xbp1s pathway. Zhao L; Qin Y; Liu Y; An L; Liu W; Zhang C; Song Q; Dai C; Zhang J; Li A J Cell Mol Med; 2024 Jun; 28(11):e18466. PubMed ID: 38847482 [TBL] [Abstract][Full Text] [Related]
38. Empagliflozin restores lowered exercise endurance capacity via the activation of skeletal muscle fatty acid oxidation in a murine model of heart failure. Nambu H; Takada S; Fukushima A; Matsumoto J; Kakutani N; Maekawa S; Shirakawa R; Nakano I; Furihata T; Katayama T; Yamanashi K; Obata Y; Saito A; Yokota T; Kinugawa S Eur J Pharmacol; 2020 Jan; 866():172810. PubMed ID: 31738936 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of the effects of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR-Preserved Trial. Anker SD; Butler J; Filippatos GS; Jamal W; Salsali A; Schnee J; Kimura K; Zeller C; George J; Brueckmann M; Zannad F; Packer M; Eur J Heart Fail; 2019 Oct; 21(10):1279-1287. PubMed ID: 31523904 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]