These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 39044587)
1. [Prediction of cancer drug sensitivity based on genomic feature distribution alignment and drug structure information]. Lian L; Yang X Sheng Wu Gong Cheng Xue Bao; 2024 Jul; 40(7):2235-2245. PubMed ID: 39044587 [TBL] [Abstract][Full Text] [Related]
2. Predicting breast cancer drug response using a multiple-layer cell line drug response network model. Huang S; Hu P; Lakowski TM BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012 [TBL] [Abstract][Full Text] [Related]
3. A link prediction approach to cancer drug sensitivity prediction. Turki T; Wei Z BMC Syst Biol; 2017 Oct; 11(Suppl 5):94. PubMed ID: 28984192 [TBL] [Abstract][Full Text] [Related]
4. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization. Wang L; Li X; Zhang L; Gao Q BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489 [TBL] [Abstract][Full Text] [Related]
5. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach. Emdadi A; Eslahchi C J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927 [TBL] [Abstract][Full Text] [Related]
6. Predicting drug sensitivity of cancer cells based on DNA methylation levels. Miranda SP; Baião FA; Fleck JL; Piccolo SR PLoS One; 2021; 16(9):e0238757. PubMed ID: 34506489 [TBL] [Abstract][Full Text] [Related]
7. DROEG: a method for cancer drug response prediction based on omics and essential genes integration. Wu P; Sun R; Fahira A; Chen Y; Jiangzhou H; Wang K; Yang Q; Dai Y; Pan D; Shi Y; Wang Z Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715269 [TBL] [Abstract][Full Text] [Related]
8. Explainable drug sensitivity prediction through cancer pathway enrichment. Tang YC; Gottlieb A Sci Rep; 2021 Feb; 11(1):3128. PubMed ID: 33542382 [TBL] [Abstract][Full Text] [Related]
9. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data. Park S; Soh J; Lee H BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645 [TBL] [Abstract][Full Text] [Related]
10. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer. Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589 [TBL] [Abstract][Full Text] [Related]
11. Beyond the limitation of targeted therapy: Improve the application of targeted drugs combining genomic data with machine learning. Miao R; Chen HH; Dang Q; Xia LY; Yang ZY; He MF; Hao ZF; Liang Y Pharmacol Res; 2020 Sep; 159():104932. PubMed ID: 32473309 [TBL] [Abstract][Full Text] [Related]
12. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance. Choi J; Park S; Ahn J Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872 [TBL] [Abstract][Full Text] [Related]
13. Predicting drug response of tumors from integrated genomic profiles by deep neural networks. Chiu YC; Chen HH; Zhang T; Zhang S; Gorthi A; Wang LJ; Huang Y; Chen Y BMC Med Genomics; 2019 Jan; 12(Suppl 1):18. PubMed ID: 30704458 [TBL] [Abstract][Full Text] [Related]
14. A community effort to assess and improve drug sensitivity prediction algorithms. Costello JC; Heiser LM; Georgii E; Gönen M; Menden MP; Wang NJ; Bansal M; Ammad-ud-din M; Hintsanen P; Khan SA; Mpindi JP; Kallioniemi O; Honkela A; Aittokallio T; Wennerberg K; ; Collins JJ; Gallahan D; Singer D; Saez-Rodriguez J; Kaski S; Gray JW; Stolovitzky G Nat Biotechnol; 2014 Dec; 32(12):1202-12. PubMed ID: 24880487 [TBL] [Abstract][Full Text] [Related]
15. Improving anti-cancer drug response prediction using multi-task learning on graph convolutional networks. Liu H; Peng W; Dai W; Lin J; Fu X; Liu L; Liu L; Yu N Methods; 2024 Feb; 222():41-50. PubMed ID: 38157919 [TBL] [Abstract][Full Text] [Related]
16. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. Menden MP; Iorio F; Garnett M; McDermott U; Benes CH; Ballester PJ; Saez-Rodriguez J PLoS One; 2013; 8(4):e61318. PubMed ID: 23646105 [TBL] [Abstract][Full Text] [Related]
17. Ensembled machine learning framework for drug sensitivity prediction. Sharma A; Rani R IET Syst Biol; 2020 Feb; 14(1):39-46. PubMed ID: 31931480 [TBL] [Abstract][Full Text] [Related]
18. Gene-centric multi-omics integration with convolutional encoders for cancer drug response prediction. Lee M; Kim PJ; Joe H; Kim HG Comput Biol Med; 2022 Dec; 151(Pt A):106192. PubMed ID: 36327883 [TBL] [Abstract][Full Text] [Related]
19. DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines. Li M; Wang Y; Zheng R; Shi X; Li Y; Wu FX; Wang J IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):575-582. PubMed ID: 31150344 [TBL] [Abstract][Full Text] [Related]
20. SWnet: a deep learning model for drug response prediction from cancer genomic signatures and compound chemical structures. Zuo Z; Wang P; Chen X; Tian L; Ge H; Qian D BMC Bioinformatics; 2021 Sep; 22(1):434. PubMed ID: 34507532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]