These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 3904597)

  • 21. Bacterial periplasmic nitrate and trimethylamine-N-oxide respiration coupled to menaquinol-cytochrome c reductase (Qcr): Implications for electrogenic reduction of alternative electron acceptors.
    Garg N; Taylor AJ; Kelly DJ
    Sci Rep; 2018 Oct; 8(1):15478. PubMed ID: 30341307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trimethylamine oxide respiration in Proteus sp. strain NTHC153: electron transfer-dependent phosphorylation and L-serine transport.
    Stenberg E; Styrvold OB; Strøm AR
    J Bacteriol; 1982 Jan; 149(1):22-8. PubMed ID: 6798018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata.
    Schultz JE; Weaver PF
    J Bacteriol; 1982 Jan; 149(1):181-90. PubMed ID: 6798016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptation of anaerobic cultures of Escherichia coli K-12 in response to environmental trimethylamine-N-oxide.
    Denby KJ; Rolfe MD; Crick E; Sanguinetti G; Poole RK; Green J
    Environ Microbiol; 2015 Jul; 17(7):2477-91. PubMed ID: 25471524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanistic Insight into Trimethylamine N-Oxide Recognition by the Marine Bacterium Ruegeria pomeroyi DSS-3.
    Li CY; Chen XL; Shao X; Wei TD; Wang P; Xie BB; Qin QL; Zhang XY; Su HN; Song XY; Shi M; Zhou BC; Zhang YZ
    J Bacteriol; 2015 Nov; 197(21):3378-87. PubMed ID: 26283766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detoxification of Trimethylamine N-Oxide by the Mitochondrial Amidoxime Reducing Component mARC.
    Schneider J; Girreser U; Havemeyer A; Bittner F; Clement B
    Chem Res Toxicol; 2018 Jun; 31(6):447-453. PubMed ID: 29856598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen-Dependent Cell-to-Cell Variability in the Output of the Escherichia coli Tor Phosphorelay.
    Roggiani M; Goulian M
    J Bacteriol; 2015 Jun; 197(12):1976-87. PubMed ID: 25825431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amino acid and lactate catabolism in trimethylamine oxide respiration of Alteromonas putrefaciens NCMB 1735.
    Ringø E; Stenberg E; Strøm AR
    Appl Environ Microbiol; 1984 May; 47(5):1084-9. PubMed ID: 6742826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 A resolution.
    Czjzek M; Dos Santos JP; Pommier J; Giordano G; Méjean V; Haser R
    J Mol Biol; 1998 Nov; 284(2):435-47. PubMed ID: 9813128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria.
    Lidbury I; Murrell JC; Chen Y
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):2710-5. PubMed ID: 24550299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic and physiological analysis reveals versatile metabolic capacity of deep-sea Photobacterium phosphoreum ANT-2200.
    Zhang SD; Santini CL; Zhang WJ; Barbe V; Mangenot S; Guyomar C; Garel M; Chen HT; Li XG; Yin QJ; Zhao Y; Armengaud J; Gaillard JC; Martini S; Pradel N; Vidaud C; Alberto F; Médigue C; Tamburini C; Wu LF
    Extremophiles; 2016 May; 20(3):301-10. PubMed ID: 27039108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unexpected chemoreceptors mediate energy taxis towards electron acceptors in Shewanella oneidensis.
    Baraquet C; Théraulaz L; Iobbi-Nivol C; Méjean V; Jourlin-Castelli C
    Mol Microbiol; 2009 Jul; 73(2):278-90. PubMed ID: 19555457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of acetate and CO2 on the TMAO-reduction reaction by Shewanella baltica.
    Debevere J; Devlieghere F; van Sprundel P; De Meulenaer B
    Int J Food Microbiol; 2001 Aug; 68(1-2):115-23. PubMed ID: 11545211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of respiratory substrate on the cytochrome content of Shewanella putrefaciens.
    Morris CJ; Gibson DM; Ward FB
    FEMS Microbiol Lett; 1990 Jun; 57(3):259-62. PubMed ID: 2210338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disclosure of the metabolic retroversion of trimethylamine N-oxide in humans: a pharmacogenetic approach.
    Al-Waiz M; Ayesh R; Mitchell SC; Idle JR; Smith RL
    Clin Pharmacol Ther; 1987 Dec; 42(6):608-12. PubMed ID: 3690938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural mechanism for bacterial oxidation of oceanic trimethylamine into trimethylamine N-oxide.
    Li CY; Chen XL; Zhang D; Wang P; Sheng Q; Peng M; Xie BB; Qin QL; Li PY; Zhang XY; Su HN; Song XY; Shi M; Zhou BC; Xun LY; Chen Y; Zhang YZ
    Mol Microbiol; 2017 Mar; 103(6):992-1003. PubMed ID: 27997715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduction of trimethylamine N-oxide by Escherichia coli as anaerobic respiration.
    Ishimoto M; Shimokawa O
    Z Allg Mikrobiol; 1978; 18(3):173-81. PubMed ID: 358620
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Huening KA; Groves JT; Wildenthal JA; Tabita FR; North JA
    Microbiol Spectr; 2024 Apr; 12(4):e0308623. PubMed ID: 38441472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dimethyl sulphoxide respiration in Proteus mirabilis.
    Meganathan R; Miguel L
    Microbios; 1987; 51(208-209):191-201. PubMed ID: 3316940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TorT, a member of a new periplasmic binding protein family, triggers induction of the Tor respiratory system upon trimethylamine N-oxide electron-acceptor binding in Escherichia coli.
    Baraquet C; Théraulaz L; Guiral M; Lafitte D; Méjean V; Jourlin-Castelli C
    J Biol Chem; 2006 Dec; 281(50):38189-99. PubMed ID: 17040909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.