These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 39046341)

  • 21. Tubular J-aggregates of a new thiacarbocyanine Cy5 dye for the far-red spectral region - a spectroscopic and cryo-transmission electron microscopy study.
    Berlepsch HV; Böttcher C
    Phys Chem Chem Phys; 2018 Jul; 20(28):18969-18977. PubMed ID: 29975386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of exciton transport in porphyrin aggregate nanostructures by controlling the hierarchical self-assembly.
    Kim T; Ham S; Lee SH; Hong Y; Kim D
    Nanoscale; 2018 Sep; 10(35):16438-16446. PubMed ID: 30141821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced intra-aggregate charge separation from binary excitons in mixed J-aggregates of cyanine dyes.
    Kawasaki M; Aoyama S; Kozawa E
    J Phys Chem B; 2006 Dec; 110(48):24480-5. PubMed ID: 17134205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Directed Energy Transfer through DNA-Templated J-Aggregates.
    Mandal S; Zhou X; Lin S; Yan H; Woodbury N
    Bioconjug Chem; 2019 Jul; 30(7):1870-1879. PubMed ID: 30985113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strong Coupling of Carbon Quantum Dots in Liquid Crystals.
    Sarisozen S; Polat N; Mert Balci F; Guvenc CM; Kocabas C; Yaglioglu HG; Balci S
    J Phys Chem Lett; 2022 Apr; 13(16):3562-3570. PubMed ID: 35426302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamic Control over Molecular Aggregate Assembly Enables Tunable Excitonic Properties across the Visible and Near-Infrared.
    Deshmukh AP; Bailey AD; Forte LS; Shen X; Geue N; Sletten EM; Caram JR
    J Phys Chem Lett; 2020 Oct; 11(19):8026-8033. PubMed ID: 32876461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates.
    Zengin G; Johansson G; Johansson P; Antosiewicz TJ; Käll M; Shegai T
    Sci Rep; 2013 Oct; 3():3074. PubMed ID: 24166360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supramolecularly Engineered J-Aggregates Based on Perylene Bisimide Dyes.
    Hecht M; Würthner F
    Acc Chem Res; 2021 Feb; 54(3):642-653. PubMed ID: 33289387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational Study on the Charge Transport and Optical Spectra of Anthracene Derivatives in Aggregates.
    Sun Y; Geng H; Peng Q; Shuai Z
    Chemphyschem; 2020 May; 21(9):952-957. PubMed ID: 32182404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Homogeneously mixed porphyrin J-aggregates with rod-shaped nanostructures via zwitterionic self-assembly.
    Arai Y; Tsuzuki K; Segawa H
    Phys Chem Chem Phys; 2012 Jan; 14(3):1270-6. PubMed ID: 22138679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron-Withdrawing Substituents Allow Boosted NIR-II Fluorescence in J-Type Aggregates for Bioimaging and Information Encryption.
    Zhu Y; Wu P; Liu S; Yang J; Wu F; Cao W; Yang Y; Zheng B; Xiong H
    Angew Chem Int Ed Engl; 2023 Nov; 62(47):e202313166. PubMed ID: 37817512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The spectral signatures of Frenkel polarons in H- and J-aggregates.
    Spano FC
    Acc Chem Res; 2010 Mar; 43(3):429-39. PubMed ID: 20014774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast assembly of cyanine dyes into aggregates onto [6,6]-phenyl C61-butyric acid methyl ester surfaces from organic solvents.
    Heier J; Steiger R; Nüesch F; Hany R
    Langmuir; 2010 Mar; 26(6):3955-61. PubMed ID: 20073528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mesoscopic structures and dynamics of merocyanine J-aggregate studied by time-resolved fluorescence SNOM.
    Miura A; Yanagawa Y; Tamai N
    J Microsc; 2001 May; 202(Pt 2):425-32. PubMed ID: 11309107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanotube Template-Directed Formation of Strongly Coupled Dye Aggregates with Tunable Exciton Fluorescence Controlled by Switching between J- and H-Type Electronic Coupling.
    Kamalakshan A; Ansilda R; Mandal S
    J Phys Chem B; 2021 Jul; 125(27):7447-7455. PubMed ID: 34196554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coherent Exciton Delocalization in a Two-State DNA-Templated Dye Aggregate System.
    Cannon BL; Kellis DL; Patten LK; Davis PH; Lee J; Graugnard E; Yurke B; Knowlton WB
    J Phys Chem A; 2017 Sep; 121(37):6905-6916. PubMed ID: 28813152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface exciton polaritons supported by a J-aggregate-dye/air interface at room temperature.
    Takatori K; Okamoto T; Ishibashi K; Micheletto R
    Opt Lett; 2017 Oct; 42(19):3876-3879. PubMed ID: 28957149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Luminescence properties of the mixed J-aggregate of oxacyanine dye and thiacyanine dye. Formation of a persistence-type aggregate.
    Yamaguchi A; Kometani N; Yonezawa Y
    J Phys Chem B; 2005 Feb; 109(4):1408-14. PubMed ID: 16851110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atomistic simulation studies of ionic cyanine dyes: self-assembly and aggregate formation in aqueous solution.
    Yu G; Walker M; Wilson MR
    Phys Chem Chem Phys; 2021 Mar; 23(11):6408-6421. PubMed ID: 33705506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Near-Infrared Luminescence of Self-Assembled Platinum(II) Complexes: From Fundamentals to Applications.
    Wei YC; Kuo KH; Chi Y; Chou PT
    Acc Chem Res; 2023 Mar; 56(6):689-699. PubMed ID: 36882976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.