These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 39046464)

  • 1. Empagliflozin prevents heart failure through inhibition of the NHE1-NO pathway, independent of SGLT2.
    Chen S; Wang Q; Bakker D; Hu X; Zhang L; van der Made I; Tebbens AM; Kovácsházi C; Giricz Z; Brenner GB; Ferdinandy P; Schaart G; Gemmink A; Hesselink MKC; Rivaud MR; Pieper MP; Hollmann MW; Weber NC; Balligand JL; Creemers EE; Coronel R; Zuurbier CJ
    Basic Res Cardiol; 2024 Oct; 119(5):751-772. PubMed ID: 39046464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Off-target effects of sodium-glucose co-transporter 2 blockers: empagliflozin does not inhibit Na+/H+ exchanger-1 or lower [Na+]i in the heart.
    Chung YJ; Park KC; Tokar S; Eykyn TR; Fuller W; Pavlovic D; Swietach P; Shattock MJ
    Cardiovasc Res; 2021 Dec; 117(14):2794-2806. PubMed ID: 33135077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Empagliflozin mitigates cardiac hypertrophy through cardiac RSK/NHE-1 inhibition.
    Chen S; Overberg K; Ghouse Z; Hollmann MW; Weber NC; Coronel R; Zuurbier CJ
    Biomed Pharmacother; 2024 May; 174():116477. PubMed ID: 38522235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delayed ischaemic contracture onset by empagliflozin associates with NHE1 inhibition and is dependent on insulin in isolated mouse hearts.
    Uthman L; Nederlof R; Eerbeek O; Baartscheer A; Schumacher C; Buchholtz N; Hollmann MW; Coronel R; Weber NC; Zuurbier CJ
    Cardiovasc Res; 2019 Aug; 115(10):1533-1545. PubMed ID: 30649212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na
    Uthman L; Baartscheer A; Bleijlevens B; Schumacher CA; Fiolet JWT; Koeman A; Jancev M; Hollmann MW; Weber NC; Coronel R; Zuurbier CJ
    Diabetologia; 2018 Mar; 61(3):722-726. PubMed ID: 29197997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium-glucose cotransporter 2 inhibitors antagonize lipotoxicity in human myeloid angiogenic cells and ADP-dependent activation in human platelets: potential relevance to prevention of cardiovascular events.
    Spigoni V; Fantuzzi F; Carubbi C; Pozzi G; Masselli E; Gobbi G; Solini A; Bonadonna RC; Dei Cas A
    Cardiovasc Diabetol; 2020 Apr; 19(1):46. PubMed ID: 32264868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amelioration of diastolic dysfunction by dapagliflozin in a non-diabetic model involves coronary endothelium.
    Cappetta D; De Angelis A; Ciuffreda LP; Coppini R; Cozzolino A; Miccichè A; Dell'Aversana C; D'Amario D; Cianflone E; Scavone C; Santini L; Palandri C; Naviglio S; Crea F; Rota M; Altucci L; Rossi F; Capuano A; Urbanek K; Berrino L
    Pharmacol Res; 2020 Jul; 157():104781. PubMed ID: 32360273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empagliflozin inhibits increased Na influx in atrial cardiomyocytes of patients with HFpEF.
    Trum M; Riechel J; Schollmeier E; Lebek S; Hegner P; Reuthner K; Heers S; Keller K; Wester M; Klatt S; Hamdani N; Provaznik Z; Schmid C; Maier L; Arzt M; Wagner S
    Cardiovasc Res; 2024 Jul; 120(9):999-1010. PubMed ID: 38728438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Empagliflozin restores lowered exercise endurance capacity via the activation of skeletal muscle fatty acid oxidation in a murine model of heart failure.
    Nambu H; Takada S; Fukushima A; Matsumoto J; Kakutani N; Maekawa S; Shirakawa R; Nakano I; Furihata T; Katayama T; Yamanashi K; Obata Y; Saito A; Yokota T; Kinugawa S
    Eur J Pharmacol; 2020 Jan; 866():172810. PubMed ID: 31738936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empagliflozin maintains capillarization and improves cardiac function in a murine model of left ventricular pressure overload.
    Nakao M; Shimizu I; Katsuumi G; Yoshida Y; Suda M; Hayashi Y; Ikegami R; Hsiao YT; Okuda S; Soga T; Minamino T
    Sci Rep; 2021 Sep; 11(1):18384. PubMed ID: 34526601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Empagliflozin protects against heart failure with preserved ejection fraction partly by inhibiting the senescence-associated STAT1-STING axis.
    Shi Y; Zhao L; Wang J; Liu X; Bai Y; Cong H; Li X
    Cardiovasc Diabetol; 2024 Jul; 23(1):269. PubMed ID: 39044275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empagliflozin and Dapagliflozin Reduce ROS Generation and Restore NO Bioavailability in Tumor Necrosis Factor α-Stimulated Human Coronary Arterial Endothelial Cells.
    Uthman L; Homayr A; Juni RP; Spin EL; Kerindongo R; Boomsma M; Hollmann MW; Preckel B; Koolwijk P; van Hinsbergh VWM; Zuurbier CJ; Albrecht M; Weber NC
    Cell Physiol Biochem; 2019; 53(5):865-886. PubMed ID: 31724838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation.
    Koyani CN; Plastira I; Sourij H; Hallström S; Schmidt A; Rainer PP; Bugger H; Frank S; Malle E; von Lewinski D
    Pharmacol Res; 2020 Aug; 158():104870. PubMed ID: 32434052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empagliflozin reduces arrhythmogenic effects in rat neonatal and human iPSC-derived cardiomyocytes and improves cytosolic calcium handling at least partially independent of NHE1.
    Silva Dos Santos D; Turaça LT; Coutinho KCDS; Barbosa RAQ; Polidoro JZ; Kasai-Brunswick TH; Campos de Carvalho AC; Girardi ACC
    Sci Rep; 2023 May; 13(1):8689. PubMed ID: 37248416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes.
    Mustroph J; Wagemann O; Lücht CM; Trum M; Hammer KP; Sag CM; Lebek S; Tarnowski D; Reinders J; Perbellini F; Terracciano C; Schmid C; Schopka S; Hilker M; Zausig Y; Pabel S; Sossalla ST; Schweda F; Maier LS; Wagner S
    ESC Heart Fail; 2018 Aug; 5(4):642-648. PubMed ID: 30117720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats.
    Lee HC; Shiou YL; Jhuo SJ; Chang CY; Liu PL; Jhuang WJ; Dai ZK; Chen WY; Chen YF; Lee AS
    Cardiovasc Diabetol; 2019 Apr; 18(1):45. PubMed ID: 30935417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empagliflozin mitigates ponatinib-induced cardiotoxicity by restoring the connexin 43-autophagy pathway.
    Mattii L; Moscato S; Ippolito C; Polizzi E; Novo G; Zucchi R; De Caterina R; Ghelardoni S; Madonna R
    Biomed Pharmacother; 2024 Sep; 178():117278. PubMed ID: 39116784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury.
    Aroor AR; Das NA; Carpenter AJ; Habibi J; Jia G; Ramirez-Perez FI; Martinez-Lemus L; Manrique-Acevedo CM; Hayden MR; Duta C; Nistala R; Mayoux E; Padilla J; Chandrasekar B; DeMarco VG
    Cardiovasc Diabetol; 2018 Jul; 17(1):108. PubMed ID: 30060748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium-glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy.
    Arow M; Waldman M; Yadin D; Nudelman V; Shainberg A; Abraham NG; Freimark D; Kornowski R; Aravot D; Hochhauser E; Arad M
    Cardiovasc Diabetol; 2020 Jan; 19(1):7. PubMed ID: 31924211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empagliflozin directly improves diastolic function in human heart failure.
    Pabel S; Wagner S; Bollenberg H; Bengel P; Kovács Á; Schach C; Tirilomis P; Mustroph J; Renner A; Gummert J; Fischer T; Van Linthout S; Tschöpe C; Streckfuss-Bömeke K; Hasenfuss G; Maier LS; Hamdani N; Sossalla S
    Eur J Heart Fail; 2018 Dec; 20(12):1690-1700. PubMed ID: 30328645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.